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Abstract:

The programming approach to computability presented in the textbook by Kfoury, Moll,
and Arbib in 1982 has been embedded into a programming course following the textbook by
Abelson and Sussman. This leads to a course concept teaching good programming practice
and clear theoretical concepts simultaneously. Here, we explain some of the main points of
this approach: the halting problem, primitive and u-recursive functions and the operational
counterpart of these functions, i.e., the Loop and the While programs.

1 Introduction

A usual programming course is mainly concerned with presenting syntactic sugar and semantic
tricks to solve more or less small, standardized problems. In the end, the students know a lot
of details how to make a computer run, and at the best, they are familiar with good design
practice and some software-engineering tools. But, do they understand what computer science
is and what it can bring about? To remedy this, they need not only be taught the theory
as a supplement, but they should be supplied with the relationship between fundamentals and
practice.

The main task of both programming and theory is making definitions, proving properties of
the objects introduced by the definitions, and taking advantage of these properties. We can
derive profit from this analogy by teaching theory from a programmer’s point of view. A topic,
which is very closely related to programming and at the same time, is at the heart of theoretical
computer science, is computability theory. Therefore, it is well-suited as an entrance to theory.
Even freshmen perceive the clarity of Kleene’s theory of recursive functions if the definitions are
translated one-to-one into higher-order functions of about five lines using some LISP-dialect.
The students can then apply these functions to create computable functions one after the other,
make them run and can convince themselves that the theory works. It is nice to see that even
hackers can be tempted into studying the theory of recursive functions, efficiency problems,
denotational semantics, etc., if they can do this sitting in front of their beloved computers.

In 1995, Morales-Bueno has proposed to explain noncomputability in a first-year programming
course with the aid of a programming language version of the busy-beaver-problem [7]. He
supposes that the halting problem is cited in this context for historical reasons and he argues
that a formal proof of the unsolvability of the halting problem is beyond the scope of such a
course. From his paper and some discussions we had with colleagues, we have learned that a
very interesting and easy-to-understand approach to unsolvability of the halting problem is no
longer known in the community and that it should be brought to the mind of a broader audience
again. We think of the approach already presented by Hoare and Allison in 1972 [3].

In the following, we summarize two of the theoretical aspects we have integrated into our in-
troductory course. First, we present our variation of the Hoare-Allison argument; then, we



consider Kleene’s approach to computable functions mainly following the textbook of Kfoury et
al. [4]. Our introductory course is based on the textbook of Abelson and Sussman [1] using the
functional programming language SCHEME. The concept is now used since more than ten years.

2 Unsolvability of the Halting Problem

SCHEME is a functional programming language. Therefore, the first control construct to be
used by the students is recursion and with high probability, they encounter the problem of
nonterminating programs very early. They are motivated to ask for a program testing their own
programs for termination. At this point, we prove:

Theorem 1 (Halting problem):
In a type-free language containing alternatives, negation, and recursive functions, it is impos-
sible to write a program that solves the halting problem.

The proof follows Hoare and Allison and is by contradiction!. We assume existence of a SCHEME
program solving the halting problem:

Definition 2 (Type-free terminates function):
The program

(define (terminates? p x) ( body ))
solves the halting problem if the body satisfies the following properties:

(a) The function terminates for all values of the parameters p and x.

(b) The function call yields true if application of p to x, i.e., the prospective call (p x),
terminates.

(c) It yields false if (p x) does not terminate.

Under this assumption, we can write another SCHEME function:

Program 3 (Hetero):

(define (hetero p)
(cond ((terminates? p p) (not (p p)))
(else #t)
) )

This function always terminates since (p p) is called only after ensuring its termination. (In
the other branch, the constant true is returned; this is trivially a terminating function.) Since
each call to hetero terminates, the calls (terminates? hetero p) yield true for all p. There-
fore, (terminates? hetero hetero) also yields true, and this tells us that (hetero hetero)
terminates. If, however, we want to determine the result of this call, we get a contradiction

(hetero hetero) = not (hetero hetero)
and therefore, our assumption is refuted. The function hetero is closely related to Russel’s

paradox [3]: An adjective is said to be heterological if it does not apply to itself, and we may
ask the question whether “heterological” is heterological.

1A similar proof has been presented by Kfoury et al. [4, p. 11]. The idea seems to originate from Strachey [9].



Attentative students may now argue that we have used an unfair trick. In a safe programming
language, type-checking prevents p to be applied to itself. We can, however, construct an
intuitive variation of the argument by writing two functions using a language with static typing.
The idea is to use the data type string to describe functions as well as all the arguments, as we
do when inputting them into the computer. The following notation uses PASCAL syntax, but
may easily be replaced by other languages, e.g., a functional language with type checking as ML
or MIRANDA:

Definition 4 (Typed terminates function):
We assume existence of two programs:

function interpret(p, x: string) boolean:
begin

body1l
end;
function terminates(p, x: string) boolean:
begin

body2
end

the bodies of which satisfy the following properties:

(a) If p is not a syntactically correct PASCAL program, body1 does not terminate, i.e., the
interpreter enters an infinite loop (instead of printing an error message).

(b) If p is a syntactically correct PASCAL program, body1 interprets p with data x.

(c) body2 terminates for all arguments p and x; it returns true if and only if the function
call interpret(p, x) terminates, i.e., if p is a syntactically correct PASCAL program
and if its interpretation with data x terminates.

Then, we rewrite the function hetero in the following way:

Program 5:

function hetero(p: string) boolean:
begin
if terminates(p, p) then not interpret(p, p)
else true
end

The call interpret(p, p) terminates if p is syntactically correct and running the program p
with the data p terminates. Again, we get the contradiction:

interpret (hetero, hetero) = not interpret(hetero, hetero)

But in this case, we have assumed two function bodies to exist. Therefore, we can conclude only
the following:

Theorem 6 (Halting problem in typed languages):
In a statically typed programming language containing the data types of strings and truth
values, alternatives, negation, and function calls, we have at most one of the following possi-
bilities:



— We can write the interpreter of the language in the language itself.
— We can solve the halting problem for this language in the language itself.

Since existence of a compiler implies existence of an interpreter? and since there are Pascal-
compilers written in Pascal, the halting problem can not be solved in Pascal. Conversely, if
you define a programming language allowing only terminating programs, you can not write the
compiler or the interpreter in this language, since the halting problem is solved by a trivial body
returning true in each case.

3 Primitive Recursive Functions

Using only one data type makes a fine opportunity to introduce the notion of goedelization,
since each string can be interpreted as a (binary) natural number [4, p. 47]. Of course, Goedel’s
original approach uses prime-number factorization, but the arguments are very analogous: Using
the prime number approach, we also have to check whether the decomposition of a number
fulfills a certain formation rule (syntactic correctness), and we assign an interpretation only to
the correct numbers. An introductory course is not the right place to go into the details of
goedelization, but the idea can be used to explain why it is sufficient to restrict computability
considerations to functions of natural numbers, and we can discuss the limits of computability
along Kleene’s theory of recursive functions.

Definition 7 (Primitive recursive functions):
Primitive recursive functions are defined inductively:

(a) The constant function ¢y = 0, the successor function succ(z) = z+1, and the projections
Pni(T1, ..., Ty) = x; are primitive recursive.

(b) The class of primitive recursive functions is closed under substitution.

(c) If g: N* — Nand h : N**2 — N are primitive recursive, then the function f : N**! — N

defined by
f (co, Tiyesln) = g ( X1,--.,2n )
f(suce(y), z1,...,2z,) = h ( f(y,z1,-..,Zs),
Y,
T1y.-.,Tp

)

is primitive recursive, too.
The basic functions of this definition can easily be translated into SCHEME:

Program 8 (Basic functions):

(define c0 0)
(define (succ x) (+ x 1))
(define (pil x) x)

(define (p21 x y) x)
(define (p22 x y) y)

2Run the compiler and subsequently run the object program: The effect is the same as running an interpreter.



(define (p31 x y z) x)
(define (p32 x y 2z) y)
(define (p33 x y z) z)

Substitution is available in all programming languages. The only problem we encounter is the
fact that the left-hand side of the definition of primitive recursion includes succ(y).®> Therefore,
we add the predecessor function pred(xz) = 2 — 1 to the set of basic functions:

Program 9 (Predecessor):

(define (pred x) (- x 1))

This does not change the class of primitive recursive functions since the predecessor function
can be defined by primitive recursion with g = ¢y and h = po;.

Now, we are ready for implementing primitive recursion. For simplicity, we define different
higher-order functions depending on the number of arguments of the function to be constructed?.
prim-rec-0 constructs functions with one argument, i.e., in the definition, we have n = 0,
prim-rec-1 corresponds to n = 1, etc.:

Program 10 (Primitive Recursion):

(define (prim-rec-0 g h)
(define (f y)
(cond ((= y c0) g)
(else (h (f (pred y)) (pred y)))
) )
£

(define (prim-rec-1 g h)
(define (f y x)
(cond ((= y c0) (g x))
(else (h (f (pred y) x) (pred y) x))
) )
£

We give examples of constructing primitive recursive functions by applying these higher-order
functions:

3This is no problem if we use a modern functional language providing pattern matching.

4 At this point of our course, we have not yet introduced SCHEME functions which allow an arbitrary number
of arguments.



Program 11 (Examples):

(define odd (prim-rec-0 cO (lambda (z y)
(sub (succ c0) z)
) ) )
(define add
(prim-rec-1 pi1l
(lambda (z y x)
(succ (p31 z y x))
) ) )

(define subi
(prim-rec-1 pi1l
(lambda (z y x)
(pred (p31 z y x))
) ) )

(define sub
(lambda (x y)
(subi (p22 x y) (p21 x y))
) )

Here sub denotes the modified subtraction sub(y,z) = y = x and subi its inverse function
subi(y,z) = x = y. The students are asked to test some of the more complicated examples
given in a usual textbook, e.g., in [4]. These examples include primitive recursive predicates and
the bounded p-operator.

4 Loop programs

This may lead to ask for “traditional” language constructs that allow to implement the prim-
itive recursive functions and nothing else, i.e., to consider the theoretical foundations of the
operational programming paradigm. For this purpose, Meyer and Ritchie [6] have introduced
the notion of Loop programs, and they have shown that they are equivalent to the primitive
recursive functions:

Definition 12 (Loop programs):
A Loop program is a finite sequence of instructions for changing non-negative integers stored
in registers. The instructions are of four types:

(a) constant zero: X =0

(b) increment: X = X +1

(c) assignment: X =Y

(d) bounded loop: LOOP X < sequence of instructions > END

where X and Y denote the names of registers.’

Abelson and Sussman [1, Section 5.1] present a simulator for register machines, but we prefer
a simpler solution tailored for our purpose. We encode Loop programs as structured lists in

5The assignment operation does not increase the generative power of Loop programs, but makes programming
more convenient.



ScHEME. Consider, e.g., the following programs to
assignment, respectively:

Program 13:

(define loop-pred
>((regs a b ¢)
(zero b)
(zero c)
(loop a (copy c b)
(incr b)

)
(copy a c)

compute the predecessor function and the

(define loop-assign
’((regs a b)
(zero a)
(loop b (incr a)
)
) )

The result is always found in register a. When calling the interpreter, the given parameters
are stored into the registers at the beginning of the regs list. The other registers are auxiliary
registers. The example loop-pred may be called by (interpret loop-pred ’(4)). Register
a contains the parameter and at the end of the run, the result. Registers b and ¢ are used to

store intermediate values.

The interpreter uses recursive-descent parsing:

Program 14 (Interpreter for Loop programs):

(define (interpret progr data)
(initialize-regs (car progr) data)
(interpret-body (cdr progr))
(get-reg ’a)

(define (initialize-regs stat data)
(define (helper rlist data)
(cond ((null? rlist) nil)
(else (cond ((null? data)

(def-reg! (car rlist) 0)
(helper (cdr rlist) data))

(else

(def-reg! (car rlist) (car data))
(helper (cdr rlist) (cdr data)))

) ) ) )
(set! reglist >())
(cond ((eq? (car stat) ’regs)

(helper (cdr stat) data))

) )

(define (interpret-body body)
(cond ((null? body) nil)
(else (let ((key (caar body))



(pars (cdar body))
(tail (cdr body))
)
(cond ((eq? key ’zero) (interpret-zero pars))
((eq? key ’incr) (interpret-incr pars))
((eq? key ’copy) (interpret-copy pars))
((eq? key ’loop) (interpret-loop pars))
((eq? key ’while) (interpret-while pars))
)
(interpret-body tail)
) ) ) )

The basic instructions of the Loop language can be implemented straightforwards:

Program 15 (Basic instructions):

(define (int-zero pars)

(set-reg! (car pars) 0)
)

(define (int-incr pars)
(incr-reg (car pars))

)

(define (int-copy pars)

(set-reg! (car pars) (get-reg (cadr pars)))
)

(define (int-loop pars)
(letrec ((reps (get-reg (car pars)))
(body (cdr pars))
(iter (lambda (rep)
(cond ((equal? rep 0) nil)
(else (int-body body)
(iter (- rep 1))
)) ) ) )
(iter reps)

) )
For reason of space, we have omitted the syntax checks in the version presented here. Instead,
we assume that the syntax of the instructions is correct, e.g., that the copy instruction has a
parameter list consisting of the names of two registers declared in the prelude. This assumption
also simplifies the procedures that interact with the list of registers:
Program 16 (Register administration):

(define reglist ’())

(define (get-reg r)



(cdr (assq r reglist))

(define (set-reg! r v)
(set-cdr! (assq r reglist) v)

)

(define (incr-reg r)
(let ((reg (assq r reglist)))
(set-cdr! reg (+ 1 (cdr reg)))
) )

(define (def-reg! reg val)
(define (last reglist)
(cond ((null? (cdr reglist)) reglist)
(else (last (cdr reglist)))
) )
(cond ((null? reglist) (set! reglist (list (coms reg val))))
(else (set-cdr! (last reglist) (list (cons reg val))))

It is an instructive exercise to add syntax checks to our interpreter. The usual solution is adding
suitable error messages. The interpreter matches the definition of Definition 4, if we substitute
an infinite loop for the standard function error.

5 u-Recursive Functions

It is very easy to show that there exist computable functions that are not primitive recursive [4,
p- 208]. Although the proof is very simple, the students may ask for an example. In theoretical
computer science, the usual answer to this question is the Ackermann function, but it is very
difficult to prove that this function is not primitive recursive (see, e.g., [2, p. 82-88|), and
furthermore, it is not a function relevant in the everday applications. Since primitive recursive
functions are total, each Loop program terminates, and from Theorem 6, we get:

Corollary 17: An interpreter (or a compiler) for the language of Loop programs can not be written
as a Loop program, i.e., it is not a primitive recursive function.

Interpreters (and compilers) not only are examples of practical relevance, but also do not show
the rapid growth of the Ackermann function. To extend our computability concepts, we need
language constructs that allow infinite loops.

Definition 18 (u-recursive functions):
A function is p-recursive if
— it is one of the basic primitive recursive functions,
— it is constructed from p-recursive functions by substitution,
— it is constructed from p-recursive functions by primitive recursion,



— it is constructed from a total u-recursive function by application of the (unbounded) p-
operator:
Yo if h(yo,x1,...,2n) =0
pw h(y, @, ... 2y) = Ay < yo)(h(y, z1,- .., %n) # c0)
v undefined if there is no such y

We can directly translate p-recursion into a SCHEME program. Here, we consider only the case
that we want to define a function with two arguments, the other cases are analogous:

Program 19 (p-recursion):

(define (mu-rek-2 h)
(define (helper y x1 x2)
(cond ((= (h y x1 x2) c0) y)
(else (helper (succ y) x1 x2))
) )
(lambda (x1 x2) (helper c0 x1 x2))
)

The local function helper implements the unbounded iteration; it is called with the argument
y = 0 and then, it calls itself again after incrementing the argument y.

The operational analogue is the language of While programs:

Definition 20 (While programs):
A While program is a finite sequence of instructions for changing non-negative integers stored
in registers. The instructions are of four types:

(a) constant zero: X =0

(b) increment: X = X + 1

(c) assignment: X =Y

(d) unbounded loop: WHILE X #Y DO < sequence of instructions > END

where X and Y denote the names of registers.

The interpreter of the While language can easily be derived from the interpreter of the Loop
language, since it is sufficient to replace the Loop construct with an unbounded loop:

Program 21 (Interpreter for While programs):

(define (interpret-while pars)

(define regl (car pars))

(define reg2 (cadr pars))

(define body (caddr pars))

(define (helper)

(cond ((equal? (get-reg regl) (get-reg reg2)) nil)
(else (interpret-body body)
(helper) ; repeat loop

) ) )

(helper) ; first call
)

A simple example is the implementation of integer division:



Program 22 (Integer division):

(define w-div
’((regs a b cde)
(copy ¢ a)
(zero a) (zero d)
(while d ¢ ((zero e)
(while e b ((incr 4d)
(incr e)
) )
(incr a)

) )) )

This function yields a/b if the result is integer and enters an infinite loop, otherwise.

From the interpreter of While programs, the students get a first impression of what a universal
function is. For this, we have to show that the interpreter can be written as a While program.
Although this proof needs some more pages, it is straightforward. The students can implement
and test the necessary subroutines along the exercises given in [4, Sect. 3.1].

6 Conclusion

When revising our course about ten years ago, we decided to follow the textbook by Abelson and
Sussman [1], since a stable SCHEME interpreter was available for free, and every student could
be assumed to install it on its own computer. Today, one may choose other functional languages,
e.g., ML. MIRANDA would be even better because of some more convenient notations such as
the where-clause instead of let and indentation having syntactical meaning. Unfortunately,
MIRANDA is more expensive and - as far as we know - it is no longer supported.

We have introduced some additional theoretical aspects step by step into the course. Our presen-
tation of computability results was strongly influenced by the fine textbook of Kfoury, Moll, and
Arbib [4], although we have translated the programming language ideas into SCHEME. Since
functional languages cause students to write recursive programs and since the fast increasing
number of parentheses of SCHEME programs enforces subdividing programs into small pieces,
it is easy to verify the correctness of each program. (Even if the students do not so later on,
they have adopted a special style of thinking about program structure.) Other theoretical as-
pects can be introduced in a secondary course on functional programming, e.g., denotational
semantics, and the concepts typical of compiler technique can be added to the interpreter in a
straightforward way.

At many universities, teaching practical programming is separated from teaching computer sci-
ence. As a result, students consider programming and computer science as two different worlds.
We have not only to look for how to make the students enthusiastic about theory, but also to
train them for applying rigorous thinking to programming, and this can be done best by teaching
both things together.
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