Fragestellungen 15

Fragestellungen

- ➤ Sind kontextfreie Sprachen kompositional? (Die Klasse der kontextfreien Sprachen ist abgeschlossen unter Vereinigung, Konkatenation und Kleene-Stern.)
- ► Ist für kontextfreie Sprachen das Wortproblem schnell lösbar? (Die von determinitischen Kellerautomaten erkannten Sprachen lassen sich in linearer Zeit erkennen.)
- ▶ Wie hängen Kellerautomaten und kontextfreie Sprachen zusammen? (Kellerautomaten erkennen genau die kontextfreien Sprachen.)
- Was können Kellerautomaten nicht?

Pumping-Lemma für kontextfreie Sprachen

Zu jeder kontextfreien Sprache L existiert ein $p \in \mathbb{N}$, so dass gilt:

Ist $z \in L$ mit $length(z) \ge p$ dann lässt sich z schreiben als z = uvwxy, wobei

- $length(vwx) \leq p$,
- $vx \neq \lambda$ und
- $uv^iwx^iy \in L$ für alle $i \in \mathbb{N}$.

Anwendung des Pumping-Lemmas

Mit Hilfe des Pumping-Lemmas kann gezeigt werden, dass bestimmte Sprachen nicht kontextfrei sind.

Behauptung

Die Sprache $L = \{a^nb^nc^n \mid n \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis (Skizze)

Annahme: L ist kontextfrei.

Sei p die Konstante aus dem Pumping-Lemma.

Sei $z=a^pb^pc^p$ (d.h., $z\in L$ und $length(z)\geq p$), und sei

z = uvwxy mit $length(vwx) \leq p$ und $vx \neq \lambda$.

1.Fall: $vx = a^m b^n$ mit $1 \le m+n \le p$. Dann gilt

 $uv^0wx^0y = a^{p-m}b^{p-n}c^p \notin L$. (Widerspruch)

2.Fall: $vx = b^m c^n$ mit $1 \le m + n \le p$. Analog.

Korollar. Die Klasse \mathcal{L}_{KFS} der kontextfreien Sprachen ist unter Schnitt nicht abgeschlossen.

```
Beweisidee: Die Sprachen L_1=\{a^nb^nc^m\mid m,n\in\mathbb{N}\} und L_2=\{a^mb^nc^n\mid m,n\in\mathbb{N}\} sind kontextfrei, ihr Schnitt \{a^nb^nc^n\mid n\in\mathbb{N}\} aber nicht.
```