Monads and Modular Term Rewriting

Christoph Liith! and Neil Ghani?

! Bremen Institute for Safe Systems, FB 3, Universitdt Bremen

Postfach 330440, 28334 Bremen
cxl@informatik.uni-bremen.de

2 The School Of Computer Science
University of Birmingham, Birmingham, England
nxgQ@cs.bham.ac.uk

Abstract. Monads can be used to model term rewriting systems by generalising
the well-known equivalence between universal algebra and monads on the category
Set. In [Lii96], this semantics was used to give a purely categorical proof of the
modularity of confluence for the disjoint union of term rewriting systems. This
paper provides further support for monadic semantics of rewriting by giving a
categorical proof of the most general theorem concerning the modularity of strong
normalisation. In the process, we improve upon the technical aspects of earlier work.

1 Introduction

Term rewriting systems (TRSs) are widely used throughout computer science
as they provide an abstract model of computation while retaining a relatively
simple syntax and semantics. Reasoning about large term rewriting systems
can be very difficult and an alternative is to define structuring operations
which build large term rewriting systems from smaller ones. Of particular
interest is whether key properties are modular, that is when does a structured
term rewriting system inherit properties from its components?

Although most properties are not in general modular, there are a num-
ber of results in the literature providing sufficient conditions for the modu-
larity of key properties. Research originally focussed on the disjoint union,
for which confluence is modular (Toyama’s Theorem), whereas strong nor-
malisation is not. However, strong normalisation is modular under a variety
conditions, such as both systems are not collapsing (i.e. contain no collapsing
rules) [Rus87], both systems are not duplicating [Rus87], one system is neither
duplicating nor collapsing [Mid89], or both systems are simplifying [KO92].
Modularity results for conditional term rewriting systems and unions which
permit limited sharing of term constructors are rather unsatisfactory and
tend to require rather strong syntactic conditions. Overall, although many
specific modularity results are known, what is lacking is a coherent framework
which explains the underlying principles behind these results.

We believe that part of the problem is the overly concrete, syntactic na-
ture of term rewriting and that a more abstract semantics is needed. Abstract

Reduction Systems provide a semantics for term rewriting systems using rela-
tions, but relations do not posses enough structure to adequately model key
concepts such as substitution, context, layer structure etc. Thus the relational
model is used mainly as an organisational tool with the difficult results proved
directly in the syntax. Category theory has been used to provide a semantics
for term rewriting systems at an intermediate level of abstraction between the
actual syntax and the relational model, using structures such as 2-categories
[RS87,See87], Sesqui-categories [Ste94] or confluent categories [Jay90]. How-
ever, despite some one-off results [Gha95,RS87], these approaches have failed
to make a lasting impact on term rewriting.

An alternative approach starts from the observation that the categorical
treatment of universal algebra is based on the idea of a monad on the cate-
gory Set. Since term rewriting systems can be regarded as a generalisation of
universal algebra it is natural to model a term rewriting system by a monad
over a more structured base category. The basic theory of monads over cate-
gories with more structure than Set has been developed by Kelly and Power
[KP93] and forms the theoretical basis of this research.

Monads offer a general methodology for the study of modularity in term
rewriting. Firstly, one proves that the semantics is compositional wrt. the
structuring operation in question. For the disjoint union of term rewriting
systems, this means proving that if © is a term rewriting system and Tg
is its semantics, then To,+0, = Te, + To,. Next we express the action of
the monad representing the combined term rewriting system as a pointwise
colimit over the base category T, +o,(X) = colimDx. Finally we prove that
if the objects of Dx satisfy the desired property, then so does colim Dx.

This methodology is particularly pleasing as the diagram Dx abstractly
represents the fundamental concept in modular term rewriting of the layer
structure on terms. In addition, the conditions on the use of variables which
occur in the literature arise naturally as conditions on the units of the compo-
nent monads. In [Li196], Liith used this approach to give an entirely categori-
cal proof of Toyama’s theorem. This paper proves the most general result for
the modularity of strong normalisation for disjoint unions and also improves
some technical aspects of earlier work.

The paper is divided as follows. Section 2 motivates the use of monads
as models of term rewriting systems by recalling the equivalence between
universal algebra and finitary monads on Set. Section 3 formally introduces
term rewriting systems, and Section 4 defines the monadic semantics for term
rewriting systems. Section 5 shows how disjoint unions of term rewriting
systems are treated semantically while sections 6 and 7 contain the actual
modularity results. Section 8 finishes with directions for further research. We
would like to thank Don Sannella, Stefan Kahrs and John Power for many
stimulating discussions. Glory, glory to the Hibees!

2 Universal Algebra and Monads

Definition 1 (Monad). A monad T = (T, n, 1) on a category C is given by
an endofunctor 7' : C — C, called the action, and two natural transformations,
n:1ec =T, called the unit, and p : TT = T, called the multiplication of the
monad, satisfying the monad laws: p-Tn = 1¢ = p-nr, and p-Tu = p pr.

The monadic approach to term rewriting generalises the well known equiv-
alence between (finitary) monads on the category Set and universal algebra.
Thus, in order to motivate our constructions, we begin with a brief account
of this equivalence. However, since this material is standard category theory,
we omit most proofs and instead refer the reader to the standard references
([Man76], [Rob94] and [Mac71, Section VIJ).

Every algebraic theory defines a monad on Set whose action maps a
set to the free algebra over this set. The unit maps a variable to the asso-
ciated term, while the multiplication describes the process of substitution.
The monad laws ensure that substitution behaves correctly, i.e. substitution
is associative and the variables are left and right units. Thus monads form
an abstract calculus for equational reasoning where variables, substitution
and term algebra (represented by the unit, multiplication and action of the
monad) are the primitive concepts. We now make these ideas precise.

Definition 2 (Signature). A (single-sorted) signature consists of a func-
def

tion X' : N—Set. The set of n-ary operators of X' is defined X, = X'(n)

Definition 3 (Term Algebra). Given a signature X and a set of variables
X, the term algebra Ts;(X) is defined inductively:

re X feEn tl,...tnETE(X)
‘w € Ty(X) ft,. o t) € Ts(X)

Quotes are used to distinguish a variable € X from the term ’z € Tx(X).
This will be important when analysing the layer structure on terms formed
from the disjoint union of two signatures. A term of the form ’z will be called
a term variable while all other terms are called compound terms. An element
of Tx;(X) will be called a term built over X.

Lemma 4. The map X — Tx(X) defines a monad Tx on Set.

Lemma 4 generalises to many-sorted signatures— if S is a set of sorts,
then an S-sorted signature defines a monad on Set®. Monads arising via the
term algebra construction satisfy an important continuity condition, namely
they are finitary. To understand this condition, observe that the term algebra
T's;(X) built over on an infinite set X of variables can be given as

Ts(X) = U Ts:(Xo)
XoCX is finite

This equation holds because all the operators in X' have a finite arity and
thus a term built over X can only contain a finite number of variables —
such terms are therefore built over a finite subset of X. Categorically this is
expressed by saying the functor T's is finitary:

Definition 5 (Finitary Monads). A functor is finitary iff it preserves fil-
tered colimits [Mac71]. A monad is finitary iff its action is finitary.

Lemma 6. If ¥ is a signature, then T, is finitary [Rob94, Lemma 1.7].

One can consider signatures with operations of infinite arities in which
case the associated monad satisfies a suitably generalised definition of fini-
tariness. All monads we shall consider are finitary — an example of a monad
which isn’t finitary is the powerset monad on Set which forms powersets
of arbitrary large sets and hence has “operations” of arbitrary large arity.
Monads also model algebraic theories:

Definition 7 (Equations and Algebraic Theories). Given a signature
Y. a X-equation is of the form X ¢ = s where X isaset and ¢, s € Tx(X). An
algebraic theory (X, E) consists of a signature X' and a set E of X-equations.

The term algebra construction generalises from signatures to algebraic
theories by mapping a set X to the term algebra quotiented by the equivalence
relation generated from the equations and hence we again obtain a finitary
monad over Set. The category of algebras of this monad is equivalent to the
category of models of A, justifying the correctness of the monadic semantics:
“universal algebra is the study of finitary monads over Set” [Man76].

One key property of this monadic semantics for algebraic theories is that
it is compositional. For the disjoint union of algebraic theories, this means
Ta,+4, = Ta, +T4,. This compositionality property is established by show-
ing that every finitary monad arises from an algebraic theory called the in-
ternal language of the monad.

Definition 8 (Internal Signature). The internal signature of a finitary
monad S = (S, n, u) on Set is given by

Zsm) = S(X)

card(X)=n

We can define amap g x : T (X)—SX interpreting terms from T's, (X)
in SX. We say that a monad S admits an equation (X,l,r) where I,r €
T (X), written S Ex | = r, if egx(l) = €g,x(r). The set of equations
admitted by S, written s, is defined as E¢ = {(X,1,7) | S =x | =r}.

Definition 9 (Internal Language). The internal language of a finitary
monad S on Set is given by Lg & (Xs,Es).

Crucially, these constructions are adjoint: that is, there is an adjunction
T 4L : AlgTh—Monp;,(Set) where the categories AlgTh of algebraic the-
ories and Monp;,(Set) of finitary monads on Set are appropriately defined
[BWS85]. The evaluation eg is the counit of this adjunction. Since T is left
adjoint, it preserves colimits and hence the semantics is compositional.

In summary, monads provide a semantics for algebraic theories with the
concepts of term-algebra, variable and substitution taken as primitive. This
semantics is compositional, allowing us to reason about the disjoint union of
algebraic theories in terms of the component theories.

3 Term Rewriting Systems

We now briefly review the theory of term rewriting systems — further details
may be found in [Klo92]. First, fix a countably infinite set V' of variables.

Definition 10 (Term Rewriting Systems). A term rewriting system © =
(X, R) consists of a signature X' and a set R of Y-rewrite rules of the form
r:t—s where t, s € Tx(V).

A rewrite rule r : t — s gives rise to the one-step reduction relation
Clo(t)] —» Clo(s)], where C[] is a context and o is a substitution. The one-
step reduction relation — g of a term rewriting system © = (X, R) is defined
as the union of {—,},cr, while the many-step reduction relation, denoted
—» R, is the transitive-reflexive closure of the one-step reduction relation.

A rewrite rule r : t — s is called expanding if t is a variable, and col-
lapsing if s is a variable. It is said to introduce variables if there is a variable
occuring in s which does not occur in ¢, and be duplicating if a variable oc-
curs more often in s than in ¢. Traditionally, rewrite rules are not to allowed
to be expanding or variable-introducing, but semantically these restrictions
are unnatural and hence omitted. The two key properties of term rewriting
systems are confluence and strong normalisation.

Definition 11 (Confluence and SN). A term rewriting system is conflu-
ent iff Ve, y1,y2.¢ g y1 AT — R y2 32.y1 —Rr 2 ANys — g 2. It is strongly
normalising (SN, terminating, Noetherian) iff there is no infinite sequence
1 —7RX2 RT3 7R .-

A term rewriting system which is both confluent and SN is called com-
plete. Modular term rewriting studies how properties of large term rewriting
systems are inherited from their component systems. The key definitions are

Definition 12 (Disjointness and Modularity). Given two term rewrit-
ing systems ©1 = (X1, Ry) and O3 = (X5, Ro) their disjoint union is defined
as (X1 + Yo, Ry + R2). A property P is modular if the disjoint union of 6,
and O, satisfies P iff @, satisfies P and ©, satisfies P.

4 Monads as Models of Term Rewriting Systems

Our semantics for term rewriting systems generalises the treatment of al-
gebraic theories as finitary monads over the category Set. We regard term
rewriting systems as a generalised signature and hence its semantics is natu-
rally given by a monad over a more structured base category. The choice of
the base category depends on the specific aspects of rewriting one is inter-
ested in. We start by using the category Pre of preorders as a base category
because definition 14 is notationally easier!, although later we switch to Cat.

Kelly and Power [KP93] have shown how algebraic theories can be gener-
alised to categories other than Set in such a way that the theory of section 2
can be developed at this more abstract level. This general theory requires the
arity of operations, variables and term algebra to have the same structure
(sets in the case of algebraic theories, preorders here) so as to allow a uniform
treatment of term formation by the multiplication of the monad. Thus, each
rewrite rule must be given an arity which is a preorder and the term algebra
construction must map a preorder of variables to a preorder of rewrites. This
leads to a more general form of rewrite rules:

Definition 13 (Generalised Rewrite Rules). A generalised rewrite rule
in a signature X is a triple (X,l,r), written as (X F [— r), where X =
(Xo,—x) is a finite preorder and I, € T (X() are terms.

Thus, in order to instantiate a generalised rewrite rule (X, 1, r), one must
not only supply terms for the free variables of the rule, but these terms must
have rewrites between them which conform to the order structure of X —
see rule [INST] of Definition 14. The traditional rewrite rules of definition 10
are of course generalised rewrite rules whose the arities are discrete.

In universal algebra, each signature X' defines a functor T’s, whose action
is to map a set X to the term algebra Tx(X) built using the operators of
XY as term constructors and the elements of X as variables. The equivalent
construction for term rewriting systems is called a term reduction algebra:

Definition 14 (Term Reduction Algebra). Given a term rewriting sys-
tem © = (¥, R) and a preorder X = (X, —x), the term reduction algebra
To(X) is the smallest preorder —r, (x) on the terms Tx(Xo) satisfying the
following inference rules (where t[ty, ... ,t,] is the substitution of the n vari-

! The term algebra construction for categories is technically more complicated as
extra equations are required to ensure the term algebra is a category.

ables in t € Tp(Y) with terms ¢1,... ,tp):

r—xY
[VAR} ‘x —Te (X) ’y

11 =To(X) S15--- sln 2Te(x) Sn
[PRE] f(t1,...,t0) —1ox) f(51,...,80)

fex,

YFEI-r)eR Y={y, .- ,yn}t,—v)
Vi,j=1,...,n.y; >y Yj = ti_’T@(X)tj

[INST] It1, - tn] —70(x) Tl b

t1,... ,tn GTZ'(X)

So the term reduction algebra To(X) has as objects the terms which can
be built over X and has as rewrites the transitive-reflexive closure of the union
of the rewrites of @ and the rewrites of X closed under the term constructors.
This construction defines a monad and this semantics is compositional.

Lemma 15. The map X — To(X) defines a finitary, Pre-enriched monad
Te. Furthermore, this semantics is compositional.

Proof. The proofs follow those for algebraic theories. See [Lii97]. O

Our construction of the coproduct of two monads in Section 5 requires
the following technical properties.

Definition 16 (Regular Monads). A monad T is regular if

1) the action T preserves weakly filtered colimits (colimits of weakly
filtered diagrams) where a diagram D is weakly filtered if for all
1,7 € D, there is a k € D and morphisms m :¢1 — k, n:j — k;

2) the unit is a mono (i.e. every component of the unit is a mono).

Lemma 17. For a term rewriting system ©, the monad Tg is regular.

Proof. That the unit is a monomorphism is easy to see. To show that Tg
preserves weakly filtered diagrams, it is sufficient to show that To preserves
both filtered colimits (because the underlying monad on Set is finitary, see
lemma 6), and coequalizers (because it does not identify any terms). O

Enriched Monads

The crucial insight behind the constructions of the previous section is the
proper enrichment [Kel82]. In particular, the base category A has to be en-
riched over a closed monoidal category V. Further, A and V have to be locally
finitely presentable, i.e. have a small set N of objects representing isomor-
phism classes of finitely presentable objects [KP93]; for Set, A is the natural
numbers and the finitely presentable objects are the finite sets.

In the enriched setting, a signature over A is a map X : N' — A, giving
for every ¢ € N the operations of arity c. The term algebra is then given by
a functor T’y : A—A which maps an A-object of variables X to the A-object
of X-terms constructed over X. Formally, T'x;(X) is defined as the colimit in
A of the chain Tp(X) — T1(X) < ... where Tp(X) = X and

To1(X) = X + Y [e, Tu(X)] ® Z(c) (1)
ceN

Note how the closed structure over which .4 enriches occurs in equation 1. We
think of T,,+1(X) as the terms of depth n + 1, constructed as operations of
arity c applied to c-objects of terms of depth n. Our models of term rewriting
systems arise when we take A = V = Pre with the usual cartesian closed
structure providing the enrichment.

Each of the rules of Definition 14 arises as a special case of equation 1.
For instance the rule [VAR] stems from the inclusion of X in T3 (X), while
specialising equation 1 to the declaration of rewrite rules gives the following
equivalent formulation of [INST]

0 cPre(Y,To(X)) (YFI—1)eR
0() —7o(x) 0()

[INST’]

We can also specialise equation 1 to the declaration of term constructors and
hence obtain an equivalent formulation of rule [PRE].

Of course, one can vary not only the base category, but also the choice of
the monoidal structure. There are in fact two monoidal closed structures over
Cat — the usual cartesian structure and a monoidal structure which has as
objects the same objects as the cartesian product but whose morphisms are
alternating sequences of morphisms from each category. Categories enriched
over this alternative monoidal structure are called Sesqui-categories and have
been used as alternative models for term rewriting [Ste94] since they have a
categorical notion of “length”. It is our intention to use this observation to
compare the Sesqui-category approach within our monadic framework.

Monadic Versions of Rewriting Concepts

In the remainder of the paper, we give semantic proofs of modularity results
for confluence and strong normalisation. The first step is to define conflu-
ence and strong normalisation for arbitrary monads, and show that these
definitions coincide with the traditional definitions of section 3.

Definition 18 (Confluence for Monads). A category C is confluent if for
any two morphisms « : x — x1,0 : © — x5 there are morphisms v : z; —
2,8 : x93 — z such that y-a = 0-8. A monad T = (T, n, u) on Cat is confluent
if TX is confluent whenever X is.

Definition 19 (SN for Monads). A category C is SN, written C = SN, if
its underlying order R~(C) is SN, where R~ (C) is defined as follows:

RO (C] {r >y | Fa 2 — yha£1,)) @)
A monad T on Cat is strongly normalising if TX = SN whenever X' = SN.

The definition of a confluent category is different from Stell’s [Ste94] which
does not require the completions to form a commuting diagram; it is used by
Jay [Jay90] but his confluent functors have a different intention and hence
only require the identity and composition to be preserved up to having a
common reduct.

Lemma 20. A TRS O is confluent iff To is a confluent monad. Similarly,
O is SN iff Te is SN.

Proof. Tf X is a preorder and © is a term rewriting system, then Tg(X) is the
transitive-reflexive closure of the union of the one-step reduction relation — p
and the closure of the variable rewrites in X under application of operations.
Thus lemma 20 amounts to proving that the addition of variable rewrites to
a term rewriting system does not change its properties. See [L197]. O

Collapsing and expanding rewrites also have categorical formulations.

Definition 21 (Non-Expanding/Non-Collapsing Monads). A functor
F : X — Y is non-expanding, if for all objects x € X and all morphisms
a: Fx — 9y in Y there is a morphism 3 : x — y in X such that F§ =a. A
monad T = (T, n, u) on Cat is non-expanding if all components of the unit
1 are non-expanding, and the action preserves non-expanding functors, i.e. if
F : X — Y is non-expanding, then so is TF.

A functor F' : X —) is non-collapsing, if F°P is non-expanding. A monad
T = (T,n,) on Cat is non-collapsing if all components of the unit are non-
collapsing, and the action preserves non-collapsing functors

One may easily verify that a term rewriting system © is non-expanding
(non-collapsing) iff Teg is non-expanding(non-collapsing).

5 A Monadic Approach to Modularity

We have given a semantics to term rewriting systems in terms of monads on
Cat. By lemma 20 we can reason about the disjoint union of ©; and O, by
reasoning about its semantics T, +o,, which by lemma 15 is isomorphic to
the coproduct of Tg, + Te,. This section gives a pointwise construction of
the coproduct of two regular monads as the colimit of a diagram. Since this
diagram is built solely from the component monads, we can reason about the
coproduct monad in terms of the component monads.

Consider terms built in the disjoint union of two signatures {2, 3. Such
terms have an inherent notion of layer, that is one can decompose a term
constructed from symbols in the union of two disjoint signatures into a term
constructed from symbols in only one signature and strictly smaller subterms
whose head symbol is from the other signature. Thus terms built from oper-
ations of {2 + X are contained in

Toss(X) = X + To(X) + Te(X) + ToTs(X) + TsTo(X)+ (3)
ToTsTo(X) + TsToTs(X) + . ..

However this disjoint union is too large as each component of the sum in
equation 3 contains a separate copy of the variables X. Therefore this sum
is quotiented by taking the colimit of a diagram including all arrows formed
using the units and multiplications of the monads. Formally, let T1, T2 be two

regular monads on Cat, let £ 2 {1,2}, and define W “ £* to be the words
def

over L, and for w € W, T : Cat—Cat by T° o 1oat and Tiv = T;1°
where j € L,v € W. As notational shortcuts, we also define the natural
transformations 7;!, =T (n; o) and . LT (i) for u,v € W,j € L.

Definition 22 (The Colimit Diagram Dy). For every category X, the
diagram Dy has as objects the categories T% (X)) for w € W, and as edges:

(12,) = T ()T (X) () s TH999() =T ()

Lemma 23. The map on categories X +— colim Dy extends to a monad
which is the coproduct of the monads T1 and Ta.

Proof. Functoriality follows from the universal property of the colimit, and
by the fact that all arrows in the diagram are natural transformations. The
unit is simply the inclusion of X into the colimiting object. The multiplication
uses the fact that the diagram Dy is weakly filtered, and hence preserved by
the two functors 77, T>. The monad laws and universal property follow from
various diagram chases (see [Lii97] for details). O

Note that Dy is not filtered, since there is e.g. no arrow in the diagram
which makes n{?-n and 72,1-m1,21 equal.

Analysing the Coproduct Monad

By the dual of Theorem 2 in [Mac71, pg. 109], every colimit can be expressed
via coproducts and coequalizers. In particular, the colimit of Dy is given
by the coequalizer of Diagram 4, where on the left side, for every morphism

F

T X I 7« (4)
d:TeX—->Tv"XEDx G weWw

d:T"X — T"X in Dy (with u,v € W) there is a component T"X in the
coproduct, and F and G are defined as F(T"X) = 1, (T"X), G(T*"X) <
Ly (d(T*X)) where ¢, and ¢, are injections into the coproduct on the right.

Lemma 24. Given two functors F,G : X — Y, their coequalizer is a functor
Q:Y — Z, where Z is defined as follows:

1) The objects are the objects of YV, quotiented by the equivalence clo-
sure = of the relation ~ defined asx ~y <= dz € X . Fz=2,Gz = y.

2) Morphisms are sequences <f1,... , fn> of morphisms f; € V(xi,y;)
such that y; = x;4+1, quotiented by the smallest equivalence relation
= compatible with composition in Y s.t. <f,g> = <g-f> if f,g are
composable in Y, and <F'h>= <Gh> for all morphisms h in X.

Deciding the Equivalence: Normal Forms

The terms of the disjoint union of two monads are equivalence classes of ob-
jects from J], .y T &. In this section, we improve upon the presentation
of [Lu96] by introducing a pair of reduction systems which reduce the ob-
jects and morphisms of [,y 7" X to a unique normal form, deciding this
equivalence. We stress that these constructions occur at the level of regular
monads and nowhere do we use the fact that these monads arise from term
rewriting systems.

Definition 25 (The Reduction System — ;). Define the following re-
duction systems on the objects of [, ., T% X"

def .
—u =z = p, (@) |u,0 e W,j e L}
=y = {0y (2) =gz |uveW,j € L}
—0b) —n U —pu
We show that —op, is complete and hence obtain a decision procedure for the

associated equality. First, define the rank of a term ¢t € T* X as rank(t) o w
(where |w| is the length of the word w).

Lemma 26. — o is complete.

Proof. For each reduction step t —op u, the rank of ¢ is strictly greater than
that of u and hence —¢p is SN. For confluence, we refer to lemma 13 of
[L196]. Clause (i) of that lemma implies confluence of —,, and clause (ii)
implies confluence of —,,. Clause (iii) implies that —,, and —, commute and
hence — oy is confluent. The cited proof also elucidates the necessity for the
units 71, 72 to be monomorphisms. O

Since —»0yp is complete, every object in t €], oy T & reduces to a
unique normal form which we denote NF(t). This forms a decision procedure
for the equivalence of the objects:

Lemma 27. Given t,t’ € [], o TV X, Qt = Qt' iff NF(t) = NF(t').

Proof. NF(t) = NF(¢') iff ¢ and ¢’ are related is the equational theory on
[H,cw T X generated by —op. This theory is clearly the same as that in-
duced by the coequalizer of diagram 4. O

We now consider morphisms in the coequalizer of diagram 4. Since such
morphisms are sequences of morphisms in [,y T &, we start by consid-
ering the normal forms of morphisms in [], oy, TYX.

Definition 28 (The Reduction System — ,/,,). Define the reduction sys-
tems on the morphisms of [[, oy T%X:

=, Lo =, (@) |u,veW,je L}
—n = ;v(a) Hﬁa|uavem‘j€£}

def

—Mor = T U —u

Lemma 29. — ., is complete, and every morphism o in TYX reduces to
a unique normal form NF(a) s.t. for all 8, Qo = QB iff NF(a) = NF(().

Proof. Analogously to lemma 26 and 27. g

The mapping of terms and morphisms to their normal form can not be
extended to a functor, since the presence of non-expanding and non-collapsing
rewrites means that the normal form need not preserve the source and target
of a morphism. For example given a rewrite o : >x—G(’z) in T7(X), then
NF(a) = o which is in T1(X) while NF(°z) = z.

Definition 30 (Layer-Expanding and Layer-Collapsing). Let a: s —
t be in T*X, and NF(«) : s’ — t’ its normal form. Then « is called layer-
collapsing (layer-expanding) in T; if there are u,v € W,j € L and y € T"X
st ' =i, (y) (8" =i, (y)-

Lemma 31. a: s — t in T*X is layer-ezpanding (layer-collapsing) iff for
NF(a) : s —t', s # NF(s) (t' # NF(t)).

Proof. We can apply —, to a morphism o : x — y iff we can apply it to its
source x and target y. It is feasible that we can apply —,, to (or y) but not to
o; namely, if z = 7} (2') (or y = nf,(y')) and for all 3: 2" — y', 0¥, (8) # a
(and so o 4,), but then « is layer-expanding (or layer-collapsing). O

Note that a rewrite can be expanding or collapsing in both systems at the
same time. Further note that there can only be layer-expanding (collapsing)
rewrites in T, if T, is expanding (collapsing).

For sequences <aq, ... , a,> in the colimit, we do not really need to decide
the equality on them, but merely want to reason about their length (in the
light of lemma 39 below). Hence we introduce the notion of minimal length:

Definition 32 (Minimal Length). A sequence A = <ai,...,q,> is of
minimal length iff all elements are normal forms: Vi = 1,... ,n.a; = NF(a),
and no equivalent sequence is shorter: B=A = |A4| <|B|.

For an example, consider the two monads given by the following two term
rewriting systems Ry = {F(FCx2)) - HCz)}, Ry = {GCy) — ’y} Then
there are reductions a7 : FCGCF(’z))) — FC ’F(Cx)) in T1T>T1(X) and
az : F(FCx)) — HCx) in Ty (X). Since NF(FC’F(°z))) = F(F(’z)), one
can form a sequence <aj, s> although a; and as are not composable as
they inhabit different components of [, .y, T*X. This situation (and its
dual, where ay would be layer-expanding) is prototypical, as the following
lemma shows:

Lemma 33. A sequence A = <aq, ... ,an> is of minimal length iff for all
l=1,...,n, ar:x — y; is in normal form, and for allk=1,... ,n—1:

— oy, is layer-collapsing, with yx = n3’,(2) (w,v € W, j € L), and there are
r,s € Wi € Lst.w=ri,v=1is,i# j, xpy1 = pj (2) and for all
ﬂ PR Z/) :u;s(ﬂ) 7& Ok+15

— or agy1 is layer-expanding, with xr1 = 0, (2) (w,v € W,j € L), and
there are r,s € Wyi € L s.t. w =i, v =1is, i # j, yx = pi ((2) and for
all B: 2" — z, i (B) # ak.

Then (o, ar41) are called an incomposable pair.

Proof. A is of minimal length iff we cannot compose) and ag41, and
there are no B, Br+1 which are composable and equivalent to ay, agy1.
In particular, yr # zr4+1 but NF(yx) = NF(xg41), hence NF(yx) # yx or
ZTp+1 # NF(2g41). By lemma 31,«y is layer-collapsing iff NF (yy) # yx. Then
the second part of the first clause ensures that there is no 8’ which is com-
posable with ay s.t. Q(8) = Q(ag+1). The second clause is the dual of the
first (with xg+1 # NF(zr41)). O

We close this section by showing that given two monad morphisms « :
T1—S1, A : To—S,, their coproduct kK + A : T1 + To—S; + S, preserves the
normal form with respect to the two reduction systems —op, = prorr above.
Intuitively x + A replaces every T; layer with its image in S; under x and
similarly for Ty layers. Formally the components of k + A are constructed
by defining the obvious cone over the diagram whose colimit defines (T +
T2)(X). It is however not the case that k 4+ A preserves sequences of minimal
length, since in general the conditions of lemma 33 are not preserved.

Lemma 34. Given k: Ty — Sy, X\: To — So which are epi, let M Y+
Then M (NF(t)) = NEF(M(t)) fort € T*X, and M(NF(a)) = NF(M(«)) for

a:s—tinTYX.

Proof. By induction on the derivations ¢t —»op NF(t), @ = ror NF(ax). Essen-
tially, whenever we can reduce t —op t/, then we can reduce M () —op M (t')
(by naturality of the unit and multiplication of Ty and To, and s and A being
monad morphisms.) O

6 Modularity of Confluence

We now prove the modularity of confluence. The first step towards proving
confluence is to find conditions under which a functor preserves confluence.

Definition 35 (One-Step Completion). Given a functor Q) :) — Z, the
category) has the one-step completion property with respect to @, written
Y =g <, if for all morphisms « : z — 2/, §:y — 3’ in Y such that Qz = Qy
there are morphisms v : v — v, : w — w’ in Y such that Qv-Qa = Q4-QpS.

Lemma 36. Let Q : Y — Z be the coequalizer of two functors F,G : X —)
in Cat. If Y is confluent and Y =q <, then Z is confluent.

Proof. Given two morphisms o = [<aq,...,a,>] and § = [<01,..., Bm>]
in Z with the same source. Then (since Y =g <) there are 7, o} such
that Q(61)-Q(a1) = Q(a})-Q(S1). By induction on the length n and m of

« and 3, respectively, we obtain completions o’ def [<a§m)’ N ,a%m)>], P it
[<5£n),--- ; 7(7?)>] such that 8-a = o’- 3. 0

To prove that the coequalizer of diagram 4 is confluent we show that
Hpcw T X g © where Q is the coequalising functor. In [Lii96], this was
done using a witness relation. Here, the witnesses are replaced by the con-
ceptually simpler normal forms.

Lemma 37. The coproduct of two confluent, non-expanding, reqular monads
s confluent.

Proof. We first show that if X' is confluent then [[, ., TYX =g ©. Since
X, T1 and T, are confluent and coproducts in Cat preserve confluence,
Hycw T X is confluent. Given o : & — 2’ and f:y — ¢ in [[,cpp TYX
such that Qr = Qy, by lemma 31 (T1, T2 are non-expanding) NF(a) :
NF(z) — x¢ and NF(3) : NF(y) — yo. Further, since Qz = Qy by lemma 27
NF(xz) = NF(y). Hence there are completions v : g — 29 and 0 : yo — 2o
s.t. v-NF(«a) = §-NF(f), and hence Qv-Qa = QJ-Qp0.

Then by lemma 36 the colimit of diagram 4 is confluent if X is confluent,
and so the coproduct monad is confluent. O

The modularity of confluence for TRSs follows easily:

Theorem 38 (Toyama). Confluence is modular for non-expanding TRSs.

Proof. Let ©1 and ©5 be confluent TRSs. By lemma 17 the monads Tg,
and Te, are regular, non-expanding and by lemma 20 confluent, and so is
their coproduct (lemma 37). By lemma 15 this coproduct models the disjoint
union of @1 and @5 and hence by lemma 20 this TRS is confluent. O

7 Modularity of Strong Normalisation

As mentioned in the introduction, strong normalisation (SN) is not a modular
property for the disjoint union of term rewriting systems. We will below
find conditions under which the disjoint union of two SN monads cannot be
strongly normalising, from which several conditions under which the union
is SN will be derived. This is an adaption of the minimal counterexamples
technique in [Gra92]. We first need a criterion to determine when the disjoint
union of two monads is not SN.

Lemma 39. Given monads T1,To on Cat s.t. Ty | SN, T2 = SN, then
T1+ To ¥ SN iff for all n € N there is a sequence A of minimal length s.t.
|A] > n (called an infinite sequence).

Proof. The lemma follows from the observation that every sequence A =

<a1,. .., > (with a; @ ; — y;) of minimal length gives rise to a sequence
[z1] < [z2] < ...[yn] in the underlying order R~ (T'X) of the coproduct monad
at X. See [Lii97] for the details. O

A term rewriting system O is called strongly normalising under deter-
ministic collapses (SNDC or Cg-terminating) [Ohl94,Gra92] if it is SN and
the disjoint union © + C¢ is SN, where Cg is the term rewriting system
Ce ¥ {GCz,’y) - ’2,GCx,’y) — ’y}. A recent term rewriting result is
that the disjoint union is not SN if one system is SNDC and the other col-
lapsing. The term rewriting proof is a rather intricate encoding construction.
In this setting, the proof is far simpler: we find a monad T, representing Cg
and then analyse its combination with T;. This combination will be obtained
by a universal property of T . We first define SNDC for monads, and show
this definition is equivalent to the one used in term rewriting:

Definition 40 (SNDC). A monad T on Cat is called strongly normalising
under deterministic collapses, T = SNDC if T =SNAT + T, = SN

Lemma 41. The term rewriting system O is strongly normalising under de-
terministic collapses iff. the monad Tg is.

Proof. Using lemma 39, we must show there is an infinite reduction in © +Cg¢
iff there is an infinite sequence of minimal length in 73 + 7', . One direction
is easy, since every non-identity rewrite o : s — t in T7 + T} gives rise to
at least one rewrite step in @ + Cg. For the other direction, we draw upon
[Gra92, Lemma 2], which shows that an infinite derivation in © 4 Cg contains
infinitely many rewrites which satisfy the criteria of lemma 332. (]

2 Namely, they are destructive at level 2.

Definition 42 (A Monad called T,). The monad T, = (T ,n,, 1) on
Cat is defined as follows: it maps a category X to the category T’ (X), which
has as objects |7, X| < {1} + |X| and as morphisms

{1y} ife=1
Ty (X)(z,y) £ 40 if o # Ly=1
X(z,y) otherwise

with the evident composition (for f : z — y, f-l, =!, etc.). For a functor
F:X — Y, T (F) maps L to L, and (with x € X) to Fz in T, (),
and similarly on the morphisms. The unit ; » : X — T X is the injection
of the category X into T X, and the multiplication p » : TW T X - T X
identifies the two adjoined objects.

From the term rewriting point, this monad can be seen as representing the
system Cg.? From the categorical point of view, this monad freely adjoins an
initial object L to a category. This monad is terminal amongst non-expanding
monads on Cat:

Lemma 43. For any non-expanding monad T on Cat, there is a unique
monad morphism !y : T — T,.

Proof. For a category X, lp x : TX — T X is defined on objects as

| (IE) def Zo if v = ’I’](I‘())
X 1 otherwise

and similarly on the morphisms. This is the only definition which makes !7
a monad morphism. Note !7 x is only a functor if T is non-expanding. O

By lemma 43, for two monads T; and Ts, there is a monad morphism
14! : Ty + Ty — T1 + T, substituting all compound terms from Ts in
T1 + Ty with the object L from 7', . The proof of our main result proceeds
as follows: since T; + T is not SN, there is an infinite sequence of minimal
length, A. We consider the image of A under the monad morphism M =
1+!: Ty + Ty — T1 + T . From lemma 33, we know when a sequence has
minimal length. We will show that the monad morphism preserves these
properties, so there will be an infinite sequence of minimal length in Ty 4+ 77
as well, showing that Ty is not SNDC. Recall from lemma 33 the notion of
incomposable pairs. Assuming both monads to be non-expanding, only the
second case of lemma 33 applies:

Lemma 44. Given an incomposable pair («, 3) where « is layer-collapsing
in Ta, then (Ma, Mf3) is an incomposable pair as well.

3 Although of course T is not the monad T¢, given by that system because of its
multiplication.

Proof. By lemma 34, M(NF(a)) = NF(Ma) (as both 1 and ! are epi), so
M(a) : 21 — y1,M(08) : 22 — y2 is in normal form. The other conditions
follow since M is given by a cone morphism v between the two cones over
the diagrams defining the colimits: since 75, and pj ¢ are morphisms of the
diagram, v preserves them. O

Theorem 45. Given two reqular, non-expanding, SN monads T1 and T2 on
Cat, if T1 + T4 ¥ SN, then either T1 ¥ SNDC and T4 is collapsing or vice

Versa.

Proof. By lemma 39, there is an infinite sequence A = <aq,...,ay...> of
minimal length in Ty 4+ T5. By lemma 33, all a;; in A have to be collapsing,
so at least one of Ty or Ty is collapsing. Further, there are infinitely many
rewrites collapsing in Ty, or infinitely many rewrites collapsing in T4. Wolg.
assume the latter, and consider the sequence M A in T1+T | . If we compose all
Ma; and M ;11 which can be composed, we obtain a sequence A’ of minimal
length which is equivalent to M A, but by lemma 44, if «; is collapsing in T,
(Ma;, Ma;qq) will remain an incomposable pair, so A’ will be infinite as well.
Hence, by lemma 39, T; + T is not strongly normalising, so T1 ¥ SNDC.
O

Theorem 45 has a host of interesting corollaries such as:
Corollary 46. The following modularity results follow from Theorem 45:

1) SN is modular for non-collapsing systems.

2) SN is modular for non-duplicating systems.

3) SN is modular if one system is non-collapsing and non-duplicating.
4) SN is modular for simplifying systems.

Proof. The first is obvious. For the rest, non-duplicating and simplifying
systems are strongly normalising under deterministic collapses [Gra92].
O

Hence, all of the conditions listed in the introduction follow as corollaries
from Theorem 45. [Ohl94] contains further derived criteria.

8 Conclusions and Further Work

We have shown how monads can be used to give a semantics to term rewriting
systems by generalising the well-known equivalence between universal algebra
and finitary monads on Set. Monads are well suited to the study of modular
term rewriting as the key concepts have concise monadic formulations. We
believe this paper provides ample justification for these claims, and further
for the more general claim that category theory provides a useful level of
abstraction for the study of rewriting.

We propose to extend this work and tackle open problems in modular
term rewriting. Firstly, monads can be used to model more general notions of
term rewriting for which current modularity results are less than satisfactory.
In particular research on modularity for conditional term rewriting is at an
advanced stage. Another area where significant problems remain is that of
modularity for unions which permit limited forms of sharing. Categorically,
these unions are modelled by push-outs which again have a compositional
semantics. This observation allows us to apply the methodology outlined
in the introduction to study modularity for these more general structuring
operations.

References

[BW85] M. Barr and C. Wells. Toposes, Triples and Theories. Springer 1985.

[Gha95] N. Ghani. Adjoint Rewriting. PhD thesis, University of Edinburgh, 1995.

[Gra92] B. Gramlich. Generalized sufficient conditions for modular termination of
rewriting. In Proc. 3rd ICALP, LNCS 632, pages 53—68. Springer, 1992.

[Jay90] C. B. Jay. Modelling reductions in confluent categories. In Proc. Durham
Symposium on Applications of Categories in Computer Science, 1990.

[Kel82) G. M. Kelly. Basic Concepts of Enriched Category Theory, LMS Lecture
Notes 64. Cambridge University Press, 1982.

[Klo92] J. W. Klop. Term rewriting systems. In S. Abramsky et.al., eds., Handbook
of Logic in Computer Science Vol. 2, pages 1-116. OUP, 1992.

[KO92] M. Kurihara and A. Ohuchi. Modularity of simple termination of term
rewriting systems with shared constructors. T'CS 103:273— 282, 1992.

[KP93] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers,
and presentations of finitary monads. JPAA 89:163— 179, 1993.

[Li96] C. Luth. Compositional term rewriting: An algebraic proof of Toyama’s
theorem. In RTA’96, LNCS 1103, pages 261— 275, Springer Verlag, 1996.

[Li97] C. Liith. Categorical Term Rewriting: Monads and Modularity. PhD
thesis, University of Edinburgh, 1997. Forthcoming.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer 1971.

[Man76] E. G. Manes. Algebraic Theories, Springer Verlag, 1976.

[Mid89] A. Middeldorp. A sufficient condition for the termination of the direct
sum of term rewriting systems. In Proc. 4th LICS, p. 396-401. June 1989.

[Ohl94] E. Ohlebusch. On the modularity of termination of term rewriting sys-
tems. TCS 136:333— 360, 1994.

[Rob94] E. Robinson. Variations on algebra: monadicity and generalisations of
equational theories. Tech. Rep. 6/94, Sussex Univ. Comp. Sci., 1994.

[RS87] D. E. Rydeheard and J. G. Stell. Foundations of equational deduction: A
categorical treatment of equational proofs and unification algorithms. In
CTCS 87, LNCS 283, pages 114— 139. Springer Verlag, 1987.

[Rus87] M. Rusinowitch. On the termination of the direct sum of term-rewriting
systems. Information Processing Letters, 26(2):65-70, 1987.

[See87] R. A. G. Seely. Modelling computations: A 2-categorical framework. In
Proc. 2nd LICS, pages 65—71, 1987.

[Ste94] J. G. Stell. Modelling term rewriting systems by Sesqui-categories. Tech-
nical Report TR94-02, Keele Unversity, January 1994.

