
Nordic Journal of Computing 10(2003), 313–336.

ABSTRACTING REFINEMENTS FOR
TRANSFORMATION

EINAR BROCH JOHNSEN
University of Oslo, Department of Informatics
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

einarj@ifi.uio.no

CHRISTOPH LÜTH
Universität Bremen, FB 3 — Mathematik und Informatik

P.O. Box 330 440, D-28334 Bremen, Germany
cxl@informatik.uni-bremen.de

Abstract. Formal program development by stepwise refinement involves a lot of work
discharging proof obligations. Transformational techniques can reduce this work: apply-
ing correct transformation rules removes the need for verifying the correctness of each
refinement step individually. However, a crucial problem is how to identify appropriate
transformation rules.

In this paper, a method is proposed to incrementally construct a set of correctness pre-
serving transformation rules for refinement relations in arbitrary specification formalisms.
Transformational developments are considered as proofs, which are generalised. This re-
sults in a framework where specific example refinements can be systematically generalised
to more applicable transformation rules. The method is implemented in the Isabelle theo-
rem prover and demonstrated on an example of data refinement.

ACM CCS Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic; I.2.2 [Artificial Intelligence]: Auto-
matic Programming

Key words: program refinement, transformation, theorem provers, proof reuse

1. Introduction

When a program is developed from a specification by stepwise refinement, each
refinement step has to be proved correct, incurring a lot of work discharging proof
obligations. We believe that the development process can be effectively supple-
mented by transformational techniques. The work load is significantly reduced by
applying transformation rules which have been proven correct previously. This
way, developers only need to select appropriate rules in order to apply standard
development steps, and can consequently focus on the non-standard steps of the
development process containing the non-trivial design decisions. However, the ad-
vantage gained from transformational techniques depends on the ability to con-
struct an appropriate set of transformation rules. In this paper, we propose a

Received March 17, 2003; accepted August 22, 2003.

314 E. B. JOHNSEN, C. LÜTH

method to incrementally construct a set of transformation rules for refinement re-
lations in arbitrary specification formalisms by generalising existing, concrete re-
finement steps.

Good transformation rules should strike a balance between wide applicability
and ease of verification. In particular, the proof obligations should be substantially
easier to prove than the refinement directly. Libraries of tailored transformation
rules have been developed for particular systems with built-in notions of refine-
ment [Bauer et al. 1985, Hoffmann and Krieg-Brückner 1993, Smith 1990]. How
can similar libraries of efficient and correctness preserving transformation rules be
developed to capture refinement in arbitrary specification formalisms, for example
Z [Woodcock and Davies 1996, Derrick and Boiten 2001] or CSP [Roscoe 1998]?

Our approach to this problem is based on the close correspondence between
proof obligations for refinement and applicability conditions for transformation
schemata: transformational development corresponds to proving theorems. This
correspondence gives us an incremental method for constructing transformation
rules: refinements may be formulated as theorems and generalised by means of
proof transformations. The setting of this work is the generic transformation sys-
tem TAS [Lüth and Wolff 2000], based on the Isabelle theorem prover [Nipkow et
al. 2002]. In contrast to related systems, TAS can be instantiated with any specifica-
tion formalism which is encoded into Isabelle and supports a notion of refinement.
Using TAS, transformation rules become Isabelle tactics, i.e. programmed proof
procedures. Isabelle is used both as a logical framework, guaranteeing correctness
and consistency, and as a powerful proof engine to discharge proof obligations by
e.g. providing automatic induction and simplification techniques for user-defined
datatypes.

With a generic system, established and popular specification formalisms can be
combined with a transformational development methodology. This results in a tool
for stepwise refinement of specifications in such formalisms as Z or CSP. However,
a method is needed to develop (libraries of) transformation rules for the refinement
relations of such specification languages. For this purpose, we suggest a method
to generalise theorems by abstracting them from the assumptions (i.e., other theo-
rems), operations, and types used in the proof of the theorem. With this method,
new transformation rules may be derived in a systematic manner by generalising
the theorems corresponding to concrete refinement steps.

The approach is illustrated by the technique of data refinement [Hoare 1972, de
Roever and Engelhardt 1998, Derrick and Boiten 2001], which is used in many
specification languages. We formalise data refinement in Isabelle and a specific re-
finement proof is generalised to provide a transformation rule. The approach can be
applied to other formal notions of refinement and other specification formalisms,
given an Isabelle encoding. We believe that, with appropriate sets of transforma-
tion rules, systems such as TAS can become useful assistants for formal program
development in already established and widely used specification formalisms.

The paper is structured as follows. In Section 2 we recall the idea of program
development by stepwise refinement and transformation, and advocate theorem
provers as a possible framework for such developments. Section 3 presents a
method of theorem abstraction, which is at the core of our approach to generalise

ABSTRACTING REFINEMENTS 315

developments. Section 4 reviews the basic notions of data refinement and simula-
tion, and shows how an example of data refinement can be treated in the setting of
a theorem prover. Section 5 applies the abstraction method to the example in order
to derive a generalised transformation rule. Finally, we compare to related work in
Section 6 and conclude in Section 7.

2. Refinement by transformation

This section reviews the basic principles of stepwise refinement by transformation
and how transformation can be modelled within a theorem prover. A formal speci-
fication of a program or system is an abstraction on the actual system, designed
to make its properties clear and reasoning about them feasible. In a formal de-
velopment method, the specification formalism comes equipped with at least one
transitive refinement relation S′ v S which expresses that a specification S′ is a
correct specialisation of another specification S. Refinement is used to verify that
a proposed system design preserves the properties of its specification, i.e. the cor-
rectness of the implementation. However, as the program may be substantially
different from the original specification, it is preferable to repeatedly prove refine-
ment for minor changes one at a time until one has arrived at the final program. A
stepwise refinement process can be understood as a sequence of specifications

S1, S2, . . . , Sn, (2.1)

in which each successive stage of the program development process is a correct
refinement of its preceding stage, e.g. Si+1 v Si holds for i = 1, . . . , n−1. The tran-
sitivity of the refinement relation guarantees that Sn is a refinement of S1. Usually,
S1 is an initial (abstract) specification and Sn is a program (or concrete specifi-
cation), but various cases in between may be considered; for example, refining a
requirement specification to a design specification or refining an executable specifi-
cation to an equivalent but more efficient one. This incremental approach has been
advocated and studied for different notions of refinement in the literature [Hoare
1972, Broy 1997, Back and von Wright 1998, de Roever and Engelhardt 1998,
Sannella 2000]. However, refinement relations provide little guidance for program
development. Stepwise refinement is essentially an “invent and verify” process to
prove the correctness of development steps a posteriori; stepwise refinement is not
an effective method for program development.

2.1 Transformational development

Transformational development offers a solution to this problem. Instead of invent-
ing refinement steps, each step arises from applying a transformation rule, which
has previously been proved correct. Thus, transformation rules may serve to guide
the development and to reduce the amount of proof work.

In general, a transformation rule on terms consists of parameters p1, . . . , pn, an
applicability condition A, an input pattern I, and an output pattern O:

∀ p1, . . . , pn · A =⇒ I � O (2.2)

316 E. B. JOHNSEN, C. LÜTH

A transformation I � O preserves refinement if O v I. A transformation rule such
as (2.2) is correct if the theorem ∀ p1, . . . , pn · A =⇒ O v I holds.

When a correct transformation rule is applied to a specification (or term), the ap-
plicability condition of the rule must be proved. In order to apply a transformation
rule such as (2.2) to a term t, the input pattern I must match a subterm of t, say t0,
so that t = C[t0] where C[] is the context. Let σ be a substitution which appropri-
ately instantiates I, i.e. Iσ = t0. Then Iσ may be replaced by Oσ at the position
of this subterm, i.e. the current specification t = C[t0] = C[Iσ] is transformed to
C[Oσ]. Parameters which occur in the output pattern O but not in the input pattern
I will not be instantiated by this match; their instantiation is left to the user. The
instantiated applicability condition Aσ becomes a proof obligation which ensures
the correctness of the transformational development. When Aσ holds, we know
that C[Oσ] v C[Iσ]. A stepwise development of S1 to Sm is obtained by applying
transformation rules R1, . . . ,Rm−1 to show

S1 w S2 w S3 w . . . w Sm

and transitivity is used to deduce the refinement S1 w Sm.
For reflexive refinement relations, equality preserves refinement. For any equa-

tion A = B, Burstall and Darlington [1977] have shown how to derive and use two
transformation rules

∀ p1, . . . , pn · A = B =⇒ B � A (UNFOLD)
∀ p1, . . . , pn · A = B =⇒ A � B (FOLD)

where p1, . . . , pn are the variables occurring free in A or B. Folding and unfold-
ing rules are typically used for function definitions, axioms, and α-conversion.
Some transformation rules are just standard rules of logic, while others are com-
plex design rules, e.g. implementing a function specification by tail recursion using
a divide and conquer rule [Smith 1985]. For design rules, application cannot be au-
tomated, so a system or tool for stepwise refinement by transformation can never
be fully automatic.

2.2 Transformation systems and theorem provers

Many transformation systems such as CIP [Bauer et al. 1985], KIDS [Smith 1990],
KIV [Reif et al. 1998, Reif and Stenzel 1993], PROSPECTRA [Hoffmann and
Krieg-Brückner 1993], and Specware [Smith 1999] have been constructed from
scratch, with a built-in notion of correctness, a fixed notion of refinement, and
a given library of transformation rules. However, transformation systems can
profitably be encoded in general purpose theorem provers. The theorem prover
helps organise the overall development and provides proof support for discharge
of applicability conditions. If the theorem prover itself is correct, and every trans-
formation rule has been proved correct inside the theorem prover, correctness of
the overall development is guaranteed. This approach has particularly been inves-
tigated for the Refinement Calculus of Back and von Wright [1998]; examples are

ABSTRACTING REFINEMENTS 317

found in the work of Staples [1998] and Hemer et al. [2001], and with the Refine-
ment Calculator [Långbacka et al. 1995, Butler et al. 1997]. Program transforma-
tion based on rewriting program schemas and a second-order matching algorithm
was first proposed by Huet and Lang [1978]. Recent examples of transformation
systems, implemented in the Isabelle prover, can be found in e.g. Anderson and
Basin [2000], Hemer et al. [2001], and Lüth and Wolff [2000].

In the theorem prover approach, a transformation rule of the form (2.2) can be
given by a theorem

A =⇒ I w O, (2.3)

ranging over free variables. In order to reflect the correctness of arbitrary design
choices, a standard refinement relation v is considered here, which is assumed to
be reflexive, transitive, and monotone. Monotonicity can be treated in a more fine-
grained manner by means of window inference, cf. Back et al. [1997] and Grundy
[1996], but in order to keep the exposition simple these issues shall be ignored here.

Design transformations such as those mentioned above have been derived by a
careful generalisation of known examples. We propose to formalise this process
within the formal development system. In the transformational approach, every
development step amounts to applying a particular transformation rule. Conse-
quently, transformation rules are schematic rules in a deduction system and trans-
formational program development amounts to proving theorems about refinement.
On the other hand, every proof of a refinement such as (2.1) gives rise to a trans-
formation rule. More applicable rules can be obtained by generalising previous
developments, which amounts to generalising theorems.

3. Generalising theorems

This section presents a method for abstracting theorems by means of proof transfor-
mations. Let π be a proof of a theorem φ. The generalisation strategy will transform
π into a proof of a schematic theorem in a stepwise manner. The transformation
process consists of three phases:

(1) making assumptions explicit;

(2) abstracting function symbols;

(3) abstracting types.

Each step in this process results in a proof of a theorem, obtained by transforming
the proof of the theorem from the previous step. In order to replace function sym-
bols by variables, all relevant information about these symbols, such as defining
axioms, must be made explicit. In order to replace a type constant by a type vari-
able, function symbols of this type must have been replaced by variables. Hence,
each phase of the transformation assumes that the necessary steps of the previous
phases have already occurred. The final step results in a proof π′ from which a
schematic theorem ψ =⇒ φ′ is derived, where φ′ is a modification of the initial
formula φ. In such theorems, the formulas of ψ are called applicability conditions.

318 E. B. JOHNSEN, C. LÜTH

3.1 Logical frameworks

The proposed abstraction technique consists of transforming theorems in a given
logic into derived inference rules of the same logic. This can be done inside the
logical language if a logical framework style theorem prover is used. A logical
framework is, roughly speaking, a meta-level inference system which can be used
to specify different object-level deductive systems. This section presents some key
ideas about logical frameworks that underlie our abstraction process. The formal
foundation for logical frameworks was proposed by Harper et al. [1993], for a
recent overview see Pfenning [2001]. The present work uses the Isabelle prover
[Paulson 1990].

In order to represent an object logic in a logical framework (or meta-logic), an
abstract syntax is defined for the object logic, encoding its formulas as meta-logical
terms. Derivability in the object logic is represented by a predicate on the terms of
the meta-logic, which is defined by axioms encoding the inference rules and axioms
of the object logic. For example, each logical symbol of a natural deduction system
will have associated introduction and elimination axioms. Implication elimination
(modus ponens) is represented in Isabelle’s meta-logic by the higher-order axiom
[[a =⇒ b; a]] =⇒ b, where a and b are meta-variables, i.e. placeholders for logical
formula in the object logic, and ‘;’ and ‘=⇒’ denote conjunction and implication
at the meta-level. Meta-level implication reflects object level derivability.

Logical frameworks such as Isabelle use higher-order resolution between formu-
las at the meta-level [Paulson 1990] to modify proof states. The proof state consists
of a rule, the premises of which are the remaining subgoals. If a rule’s conclusion
can be unified with a subgoal, the subgoal is replaced by the instantiated premises
of the rule; if the rule has no premises, the subgoal is removed. The proof of a for-
mula φ starts with a proof state [[φ]] =⇒ φ. When no subgoals remain, the formula
φ has been proved.

The logical framework allows proof of theorems directly in the meta-logic. Theo-
rems of the meta-level containing meta-variables are referred to as schematic theo-
rems. The correctness of all instantiations of a proved schema follows from the
correctness of the representation of the rules of the object logic. Schematic theo-
rems about meta-logic implication are derived inference rules of the object logic.
In logical frameworks, new object logic inference rules can therefore be derived
within the logical language.

We shall now describe the generalisation of theorems as sketched above. The
work presented here uses Isabelle, but the general principle holds for other logical
frameworks. For the (non-trivial) details of the implementation in Isabelle, the
reader is referred to Johnsen and Lüth [2003]. Note that a necessary condition
for the second abstraction step is that the logical framework permits higher-order
variables, and for the third step that the logical framework permits type variables.

3.2 Making proof assumptions explicit

In theorem provers, a theorem is generally proved in a theory which includes a
context of axioms and previously established theorems. In a theorem prover with

ABSTRACTING REFINEMENTS 319

automated proof support, it is not always known which theorems have been used to
solve a proof goal. However, if the proof of the theorem can be reconstructed, these
can be retrieved. In a natural deduction proof, these theorems can be introduced
at the leafs of the proof tree. In order to make a contextual theorem explicit, the
branch is closed by applying the implication introduction rule.

To illustrate this, consider the proof π of theorem φ. At the leaf of a branch π i in
the proof, a theorem or definition needed in the proof is found, say ψi. The branch
πi may be closed by applying =⇒-introduction at the root of the proof, which leads
to a proof of the formula ψi =⇒ φ. This process is repeated for every branch in π
with a relevant leaf theorem. If we need to make j theorems explicit, we derive a
proof π′ of the formula

(ψ1 ∧ . . . ∧ ψj) =⇒ φ. (3.1)

If the applicability conditions in the proof of a leaf formula ψi of the proof π are
included among the other leaf formulas of π, π can be expanded with the proof
of ψi at the appropriate leafs to remove superfluous applicability conditions from
(3.1) before the proof transformation. Also, a formula ψi must be transformed into
a closed formula by quantifying over all free variables before it is made explicit.

It is possible to improve the method presented above by weakening the applica-
bility conditions of the derived theorem. This can be done by repeatedly removing
a leaf which is followed by an elimination rule in the proof tree before applying
implication introduction to the leaf formula. For example if ∀-elimination is con-
sidered, the obtained applicability condition will be an instance of the original leaf
theorem, rather than the theorem itself.

3.3 Abstracting function symbols

The next phase of the transformation process consists of replacing function sym-
bols by variables. When all implicit assumptions (axioms and theorems) concern-
ing a function symbol have been made explicit, as in (3.1) above, all the informa-
tion about this function symbol that is needed in the proof, is contained within the
derived theorem. The function symbol has become an eigenvariable because the
proof of the theorem no longer depends on the theorem prover context with regard
to this function symbol. Therefore, such function symbols can be replaced by vari-
ables throughout the proof. Let φ[t1/t2] denote a formula φ and π[t1/t2] a proof
π after substitution, where the term or variable t1 has been replaced by the term
or variable t2 in φ and π, renaming bound variables as needed to avoid variable
capture.

A central idea in logical framework encodings is to represent object logic vari-
ables directly by meta-logic variables [Pfenning 2001]. Hereafter, all free variables
will be meta-variables. Consequently, the abstraction process replaces function
symbols by meta-variables. For a function symbol F in theorem (3.1), one may
therefore derive a new theorem

(ψ1(t1
1 , . . . , t

1
n)[F/a] ∧ . . . ∧ ψi(t

j
1, . . . , t

j
m)[F/a]) =⇒ φ[F/a], (3.2)

320 E. B. JOHNSEN, C. LÜTH

where a is a meta-variable, i.e. a placeholder for object logic terms, by transforming
the proof π′ into a new proof π′[F/a].

E 1. (C) As a simple example, consider as object
logic a higher-order equational logic, with axioms including transitivity (trans ≡
[[a = b; b = c]] =⇒ a = c), congruence (arg cong ≡ [[x = y]] =⇒ f x = f y), sym-
metry (sym), reflexivity (refl), etc. In this object logic, consider a theory including
the standard operations 0, S (successor), +, and the defining axioms for addition on
the type

�
of natural numbers:

Ax1: ∀ x · x + 0 = x Ax2: ∀ x, y · x + Sy = S(x + y)

In this theory, the theorem S0 + S0 = SS0 can be proved as follows:

Ax2
S0 + S0 = S(S0 + 0)

Ax1
S0 + 0 = S0

S(S0 + 0) = SS0
arg cong

S0 + S0 = SS0
trans

(3.3)

Following the procedure, the proof is transformed into a proof π of

(S0 + S0 = S(S0 + 0) ∧ S0 + 0 = S0) =⇒ S0 + S0 = SS0,

removing the axioms from the leafs of proof tree and closing the branches. Next
the function symbol 0 is abstracted, resulting in a derived theorem

(Sa + Sa = S(Sa + a) ∧ Sa + a = Sa) =⇒ Sa + Sa = SSa,

where the new proof π′ is given by π[0/a]. (This is allowed since 0 in the proof no
longer depends on the context.) As a next step, the function symbol S is abstracted,
resulting in the theorem

(b(a) + b(a) = b(b(a) + a) ∧ b(a) + a = b(a))
=⇒ b(a) + b(a) = b(b(a)),

from the transformed proof π′[S/b]. Finally, the infix function symbol ‘+’ is ab-
stracted (replaced by the prefix meta-variable c), yielding the theorem

c(b(a),b(a)) = b(c(b(a), a)) ∧ c(b(a), a) = b(a))
=⇒ c(b(a),b(a)) = b(b(a)),

by repeating the procedure. In the logical framework setting, a schematic (in-
ference) rule has been derived, which allows any term c(b(a),b(a)) of type

�
to

be replaced by b(b(a)), provided that the applicability conditions c(b(a),b(a)) =
b(c(b(a), a)) and c(b(a), a) = b(a)) hold.

ABSTRACTING REFINEMENTS 321

3.4 Abstracting types

When all function symbols depending on a given type have been replaced by (term)
variables, the name of the type is arbitrary. In fact, type constants can now be re-
placed by type variables. The higher-order resolution mechanism of the theorem
prover will instantiate the type variables as well as the term variables when the
inference rule is applied. If Example 1 is considered, this works well, yielding an
inference rule which can be used to prove theorems about other types than

�
. How-

ever, the formal languages used by theorem provers have structured types which
may give rise to type-specific inference rules, such as induction. When these occur
in the proofs, they must also be made explicit before type abstraction can succeed.
This is illustrated by the following example.

E 2. (P) Consider proving x + 0 = 0 + x, using the object
logic and theory of Example 1, extended with the schema for natural induction:

P0 ∀ t · Pt =⇒ P(St)
Px

ind
(3.4)

The higher-order meta-variable P allows a formulation of the induction schema as
a single rule. The following proof of the theorem is slightly edited for brevity:

0 + 0 = 0 + 0
refl

Ax1
...

St + 0 = S(t + 0)

[t + 0 = 0 + t]1

...

Ax2
...

S(t + 0) = 0 + St
trans

St + 0 = 0 + St
trans

t + 0 = 0 + t =⇒ St + 0 = 0 + St
=⇒-intro1

∀ t · t + 0 = 0 + t =⇒ St + 0 = 0 + St
∀-intro

x + 0 = 0 + x
ind

(3.5)

For abstraction over the type
�

of natural numbers here, the induction schema must
be made explicit as an assumption in the derived theorem. In the logical framework,
induction is treated as a meta-logic theorem and not as the object logic inference
rule of (3.5). Let ind’ denote the theorem corresponding to the instantiated induc-
tion rule:

ind’
def
= ind[P/(λ x · x + 0 = 0 + x)]

= (0 + 0 = 0 + 0 ∧ (∀ t · t + 0 = 0 + t =⇒ St + 0 = 0 + St))
=⇒ x + 0 = 0 + x.

Furthermore, let π1 and π2 denote the two proof trees above the induction rule in
Proof (3.5), which can now be replaced by the following proof:

π1

0 + 0 = 0 + 0
π2

∀ t · t + 0 = 0 + t =⇒ St + 0 = 0 + St
0 + 0 = 0 + 0 ∧ ∀ t · t + 0 = 0 + t =⇒ St + 0 = 0 + St

∧-intro
ind’

x + 0 = 0 + x
=⇒-elim

(3.6)

322 E. B. JOHNSEN, C. LÜTH

Following the outlined method, a proof may here be derived for the theorem

ind’ ∧ (S(0 + t) = 0 + St) ∧ (t + 0 = t) ∧ (St + 0 = St) =⇒ x + 0 = 0 + x.

In order to abstract over the type constant
�

, the function symbols from the theory
of natural numbers must be abstracted. We replace 0, S, and + by meta-variables
a, b, and c, respectively. Then, the type constant

�
can be replaced by a type

variable, resulting in a proof for the theorem

(ind’)[0/a, S/b,+/c]
∧ b(c(a, t)) = c(a,b(t)) ∧ c(t, a) = t ∧ c(b(t), a) = b(t)

=⇒ c(x, a) = c(a, x),

which can be applied as an inference rule to any type. To discharge the applicability
conditions when the rule is applied, the formula corresponding to the instantiated
induction rule must be a theorem for the new type.

The induction rule in Example 2 illustrates a more general problem: in logical
systems where new datatypes may be defined, there will be proof rules that are
specific to each datatype, such as structural induction, rules for various recursion
operators, and their duals (coinduction, corecursion). In our setting, type construc-
tors, induction rules, and recursive function definitions result in axioms that may
need to be made explicit in the transformation process before type abstraction can
be applied.

Abstraction over types demonstrates the advantage of working with abstraction
in logical frameworks: inference rules are represented by meta-logic theorems and
object logic types by meta-logic terms, so type-specific inference rules and type
constants can be handled by the abstraction process in the same way as object
logic theorems and function symbols. Consequently, the result of every abstraction
step remains within the logical language and every derived proof may be verified
in the prover. The derived inference rules may be applied to formulas of any type
defined in the object logic.

Different type-specific inference rules are reflected by different schematic theo-
rems, depending on the number and profiles of the type constructors. It is this
information which is preserved when the type-specific rules are made explicit as
applicability conditions for the theorem during the abstraction process. Hence, to
discharge the derived applicability condition, the target type must have the same or
stronger type-specific inference rules.

For the abstraction process, it does not matter whether the logical framework con-
structs datatypes conservatively (like Isabelle, where new datatypes are encoded in
a previously defined representing universe [Berghofer and Wenzel 1999, Paulson
1997]) or axiomatically by asserting relevant axioms, since theorems and axioms
are treated uniformly in the meta-logic. The abstraction is done at the meta-level
and the derived theorems apply to any type for which the corresponding instantia-
tion of the induction rule holds.

ABSTRACTING REFINEMENTS 323

3.5 Abstractions tactics

The preceding sections have shown how theorems may be generalised by abstract-
ing over assumptions, function symbols, and types. More advanced abstraction
tactics, which automate the derivation of some inference rules, can be built by
combining these basic abstraction steps.

Isabelle is organised in theories. A theory can be perceived as a signature, defin-
ing types, operations, and (rarely) axioms. Every theorem belongs to the theory
in which it is proved. Theories are organised hierarchically, so all theorems from
(direct and indirect) ancestor theories remain valid in a theory. Hence, a useful
abstraction tactic in the setting of Isabelle is to abstract a theorem from a theory
T1 to an ancestor theory T2. This corresponds to abstracting over all additional
definitions and theorems that T1 provides over T2. The tactic gathers all theorems,
operations, and types from the proof which do not occur in T2 and calls the basic
abstraction steps recursively, starting with theorems and continuing with function
symbols and types. Theorems may thus be moved from one branch of the theory
tree to another by abstraction to a common ancestor theory.

Another useful tactic is to generalise a specific type in a theorem. Before this is
feasible, all operations using this type and all theorems referring to any of these op-
erations need to be abstracted. Thus, the tactic works its way up from a given type,
identifying all operations and theorems depending on the given type, abstracting
these and then abstracting the type itself. An example of this tactic is found in
Section 4.4.

4. Data refinement and simulation

The approach is illustrated by abstraction in the context of data refinement. Data
refinement captures the idea that a concrete representation of a data structure pre-
serves the correctness of the reasoning done for an abstract representation of the
data structure. Data refinement was originally introduced by Hoare [1972], based
on concepts from Simula 67 [Dahl et al. 1968], and has been studied in various
specification languages; for overviews see the books of de Roever and Engelhardt
[1998] or Derrick and Boiten [2001].

We distinguish between a user-defined data structure (see Definition 1 below)
and a datatype, which is a constructor for an axiomatic theory for a free structure,
as provided by theorem provers. In contrast to data structures, theorem prover
datatypes come equipped with inference rules (see Section 3.4). Data refinement
is here presented in terms of relations on state spaces. Let X ↔ Y denote a relation
between sets X and Y .

4.1 Refinement of data structures

This section defines a data structure, and informally introduces data refinement.
Let Var and Val denote the types of variable names and data values, respectively.
A state is a partial function Var 7→ Val. A data structure comprises a local state
of values and an indexed collection of operations; the indexing set can be thought

324 E. B. JOHNSEN, C. LÜTH

of as a signature. Operations may read and write to a global state, denoted G.
Before a data structure may be used by a program, the local state variables must
be initialised. The local state space of a data structure can only be manipulated
through its operations.

D 1. (D) A data structure is a tuple X = 〈X, xi, {xop i}i∈I〉,
where

(1) X is the local state space,

(2) xi ∈ G↔ X is the initialisation relation,

(3) {xopi}i∈I is an indexed collection of relations in X × G ↔ X × G, the opera-
tions.

Calligraphic letters X, A, and C denote data structures. The initialisation relation
xi is total, but operations xopi may be partial. In practice, the local state space X
will often be further restricted by a type invariant. A program P(X) manipulating
a data structure X, is a sequence of operations on X starting with an initialisation.
Due to the encapsulation of the local state, the program is parametric over all data
structures with the same index set. Let A and C be two data structures, so P(C)
is obtained from P(A) by replacing the operations of A by those of C. C refines
A if, for every program P, the global state after executions of P(C) and P(A) are
the same, expressed by relational inclusion as P(C) ⊆ P(A). Formal definitions
and discussions of different formulations of data refinement may be found in the
overview books [de Roever and Engelhardt 1998, Derrick and Boiten 2001].

4.2 Simulation

To prove that a refinement relation holds between two data structures involves
quantifying over all possible programs that may use the data structures. Hence,
the definition of data refinement does not embody an “effective method for proving
data refinement” [de Roever and Engelhardt 1998]. Therefore, data refinement is
proved via simulation, comparing the effect of the data structures’ operations on the
local state by a retrieve relation. Downward simulation, which is most commonly
used, is considered here.

The possible partiality of data structure operations complicates simulation. Par-
tiality is usually handled by totalising state spaces and lifting the retrieve relation
to totalised states. Instead, partiality is treated here by considering the domain
and range of operations explicitly. The equivalence of these approaches has been
shown by Woodcock and Davies [1996]. If x is a state in the state space X and
R : X ↔ X is a relation between states, x′ denotes a state such that (x, x′) ∈ R (for
a given state x and relation R). The precondition or domain of a (partial) operation
is defined as a set of states:

D 2. (D) Let X be a state and op an operation X ↔ X. The domain
of op is the set

dom op
def
= {x | ∃ x′ · (x, x′) ∈ op}.

ABSTRACTING REFINEMENTS 325

Adapting a result of Woodcock and Davies [1996], downward simulation is defined
directly as proof conditions on the state spaces.

D 3. (D S) Let G be a global state, I an index set, and
A = 〈A, ai, {aopi}i∈I〉 and C = 〈C, ci, {copi}i∈I〉 data structures. C simulates A
if there is a retrieve relation R : A ↔ C between the local states, such that the
following conditions hold:

PC1 ∀ c′ ∈ C, g ∈ G · (g, c′) ∈ ci =⇒ ∃ a′ ∈ A · (g, a′) ∈ ai ∧ (a′, c′) ∈ R
PC2 ∀ i ∈ I ∀ a ∈ A, c ∈ C, g ∈ G·

(a, g) ∈ dom aopi ∧ (a, c) ∈ R =⇒ (c, g) ∈ dom copi

PC3 ∀ i ∈ I ∀ a ∈ A, c, c′ ∈ C, g, g′ ∈ G·
(a, g) ∈ dom aopi ∧ (a, c) ∈ R ∧ ((c, g), (c′, g′)) ∈ copi

=⇒ ∃ a′ ∈ A · ((a, g), (a′, g′)) ∈ aopi ∧ (a′, c′) ∈ R

The conditions are referred to as initialisation, applicability, and correctness.

4.3 Simulation as transformation

Downward simulation is sound but not complete with respect to refinement, so
simulation entails refinement. Soundness can be expressed as a theorem

∀A,C,R · PC1 ∧ PC2 ∧ PC3 =⇒A w C, (4.1)

which becomes a transformation rule (see Section 2.1 above). The input pattern
of the rule mentions A, but neither C nor R, which are parameters of the trans-
formation rule, to be supplied by the user when the transformation rule is applied.
Although more specific than refinement, the simulation relation is still too gen-
eral to be of practical assistance for making design decisions; in particular, it does
not identify the concrete data structure C or the retrieve relation R. Simulation
provides an effective proof method for verifying refinement steps, but it does not
make a good transformation rule.

4.4 An example of data refinement

Data refinement is illustrated by stacks, which may be implemented either by
lists or by an array with a pointer, inspired by an example from de Roever and
Engelhardt [1998]. The stack has four operations; the empty stack corresponds to
the initialisation relation, and the index set comprises the other operations I =
{push, pop, top}. An operation f : X ↔ X relates state variables x ∈ X be-
fore and after operation application. Formally, f ≡ E(x, x′) describes the relation
f

def
= {(x, x′) | E(x, x′)}, where E is a predicate on state variables.

4.4.1 The stack as a list

A stack over the integers � can be specified using finite lists. Assume a prede-
fined data type List[T] with constructor cons and selectors hd and tl; the empty
list is denoted []. For any list l, len(l) denotes the number of elements in l and l!n

326 E. B. JOHNSEN, C. LÜTH

(for 0 ≤ n < len(l)) the n’th element of l. The mapping of I to the stack operations
is evident.

data structure ListStack ≡
global (i : � , o : �)
local l : List[�]
init lempty ≡ {((i, o), l) | l = []}
ops lpush ≡ i = i′ ∧ o = o′ ∧ l′ = Cons(i, l)

lpop ≡ l , [] ∧ i = i′ ∧ o = o′ ∧ l′ = tl(l)
ltop ≡ l , [] ∧ i′ = i ∧ o′ = hd(l) ∧ l′ = l

4.4.2 The stack as an array with a pointer

The stack may be implemented by an array and a variable p: the content is stored
in the array and p points to the next free entry. Assume a predefined data type
Array[T] of arrays indexed by natural numbers. If a is a sufficiently large array of
type T , t ∈ T , and n ∈

�
, then a[n := t] is the array obtained by updating a with t

at index n. Let empty be the empty array.

data structure ArrayStack ≡
global (i : � , o : �)
local (l : Array[�], p : �)
init rempty ≡ {((i, o), (l, p)) | l = empty, p = 0}
ops rpush ≡ i′ = i ∧ o′ = o ∧ p′ = p + 1 ∧ a′ = a[p := i]

rpop ≡ i′ = i ∧ o′ = o ∧ p′ = p − 1 ∧ a′ = a
rtop ≡ i′ = i ∧ o′ = a[p − 1] ∧ a′ = a ∧ p′ = p

Initialisation of ArrayStack sets the stack pointer p to 0. As pointed out by de
Roever and Engelhardt [1998], the specifications are not equal. In particular,
ArrayStack does not satisfy the equation pop(push(t, s)) = s, which holds for
ListStack. However, the stacks cannot be distinguished by the observer functions
on the data structures.

4.5 Proving simulation

Proof that ArrayStack refines ListStack is via simulation. A retrieve relation from
the state space of ArrayStack to the state space of ListStack is needed, relating the
elements of the list in ListStack to elements of the array in ArrayStack. While the
array grows at the back, the list grows at the front; therefore, the top of ArrayStack
is always a[p − 1] if p is the stack pointer index, whereas the top of ListStack is
hd(a) or a!0. This suggests the following definition of a retrieve relation Ret : A×C
between abstract states A = List[�] and concrete states C =

�
× Array[�]:

Ret ≡ {(l, (p, a)) | p = len(l) ∧
∀ i ∈

�
· 0 ≤ i < p =⇒ l!i = a[p − i − 1]}

Using Theorem (4.1), ListStack is refined to ArrayStack by instantiating A with
ListStack, C with ArrayStack, and R with Ret. The resulting instantiated proof
obligations PC1, PC2, and PC3 are discharged using Isabelle.

ABSTRACTING REFINEMENTS 327

4.6 Modelling the data refinement in Isabelle

The preceding definitions are formalised naturally in Isabelle/HOL and orga-
nised in Isabelle theories DStruct.thy, DataRef.thy, ListStack.thy,
ArrayStack.thy, and StackRef.thy, built hierarchically on each other. The
formalisation is now briefly sketched. Let i= {push, pop, top} be an enumeration
type of indices. A data structure is represented by a tuple parametrised over global
and local states, which in Isabelle syntax becomes

types (’g, ’a) dstruct =

"(’g* ’a) set* (i=> ((’g* ’a)* (’g* ’a)) set)"

Let the type globalstate be a product of integers which captures input and out-
put variables, and lstate a list of integers which captures the local state, using
Isabelle/HOL’s predefined type list. Finally, the ListStack type lstack is defined
as (globalstate, lstate) dstruct, instantiating the data structure with ap-
propriate global and local states. The operation definitions are now straightforward.
For example, lpush becomes

lpush :: "((globalstate* lstate)* (globalstate* lstate)) set"

"lpush == {(((i, out), l), ((i’, out’), l’)).

(i’, out’)= (i, out) & (l’= i # l)}"

The indexed set lops of operations is defined by a case distinction over i, and
ListStack as an element ls == (lempty, lops) of type lstack.

ArrayStack is implemented similarly, using Isabelle/HOL’s map type. A map is
a partial function from domain ’a to range ’b, written ’a ~=> ’b. Arrays are
partial functions with the natural numbers as domain.

For this example, refinement is defined axiomatically as simulation. Let con-
stants pc1, pc2, and pc3 abbreviate the three proof obligations. Data refinement
relates data structures with the same global state space:

refines :: "[(’g, ’a) dstruct, (’g, ’b) dstruct] => bool"

"c [= a == EX r. let cinit= fst c; cops= snd c;

ainit= fst a; aops= snd a

in (pc1 r ainit cinit &

(!i. pc2 r (aops i) (cops i))&

(!i. pc3 r (aops i) (cops i)))"

Consequently, c refines a if there is a retrieve relation r satisfying the proof obli-
gations. A more elegant approach would be to define refinement by inclusions be-
tween the initialisation and operation relations, and prove that simulation is sound
with respect to this relation. However, this requires a formalisation of the sound-
ness proof of simulation inside Isabelle/HOL, an interesting exercise in its own
right but out of the scope of the present paper.

Refinement is shown by providing a retrieve relation between ArrayStack and
ListStack for the existentially bound r in the definition above. The instantiated
proof obligations pc1, pc2, and pc3 remain to be proved. While pc1 is easily dis-
charged by Isabelle, the others require some effort. The proof obligations resulting

328 E. B. JOHNSEN, C. LÜTH

from pc3 are harder to show than those resulting from pc2; an invariant relating
the contents of the array and the list is needed.

5. Transformation rules for data refinement

Although effective for verifying the correctness of development steps, the simula-
tion rule does not provide an effective method for development of specifications.
The development process still follows the invent and verify strategy: for each step
the developer must provide a new data structure, a retrieve relation, and a correct-
ness proof. Transformational development cannot replace this strategy altogether,
but the strategy can be incrementally supplemented by generalising and reusing
previously established developments.

In this section, the abstraction process outlined in Section 3 is applied to the re-
finement proof from Section 4.4. The goal of the abstraction process here is not to
derive rules which are as general as possible, but to derive constructive and easily
applicable rules; given a data structure, the prover’s instantiation mechanism for
rule application provides the target data structure, and the retrieve relation. Cor-
rectness of the transformation follows by instantiation from the correctness proof
of the transformation rule. If applicability conditions need to be verified, these
should be easier than to prove than simulation directly. When applicable, derived
rules may provide constructive development guidelines and thus supplement the
invent and verify strategy, which is still available when the transformation rules do
not apply.

5.1 Basic transformation rules

The derivation of constructive transformation rules is essentially a bottom-up pro-
cess, generalising examples of refinements into logical rules. A transformation rule
was derived and its correctness proved in Section 4.5: the example refinement of
Section 4.4 is an instance of the transformation rule for downward simulation (4.1),
and the proof obligations correspond to the applicability conditions of the trans-
formation rule. The proof obligations of the example have all been discharged,
yielding a basic transformation rule

ListStack w ArrayStack (5.1)

without any applicability conditions. However, the derived rule is very specific; it
can only be applied to this particular formalisation of ListStack. Hence, we want
to make it applicable to more data structures.

5.2 Making definitions explicit

The first step in the abstraction process is to identify the definitions and lemmas on
which the proof of the refinement theorem (5.1) depends, and make them explicit
in the formulation of the theorem. In the implementation, this is done by applying
abstraction tactics to the theorem (referred to as stack ref below). In the exam-
ple, there are three sets of definitions and lemmas to make explicit, corresponding

ABSTRACTING REFINEMENTS 329

to ListStack, ArrayStack, and the refinement between the two, respectively. These
definitions are organised in different Isabelle theories. For readability the defini-
tions related to the refinement are considered first, such as the retrieve relation,
then the definitions of ArrayStack, and finally the definitions of ListStack. These
definitions are identified by the function Inspect.dep in thms, given the name
of the Isabelle theory where the refinement is defined and the name of the theorem:

ML> val Ref_deps = Inspect.dep_in_thms [StackRef.thy] stack_ref;

val Ref_deps = ["r_same_elems","r_def"] : string list

The result is here returned as a list Ref deps, in which r def is the name of the
retrieve relation and r same elems is an auxiliary lemma used in the proof. An
Isabelle tactic AbsTac.abs thms takes a list of lemmas (and definitions) such as
Ref deps and the theorem stack ref, and transforms the proof of stack ref
into the proof of a theorem where these lemmas occur explicitly, as described in
Section 3.2. The derived theorem is named R thm.

ML> val R_thm = AbsTac.abs_thms Ref_deps stack_ref;

val R_thm =

"[| !!l k a. ((l, k, a) : r) = (l = elems k a);

r == {(x, xa, xb). xa = length x &

(ALL xc. 0 <= xc & xc < xa
--> x ! xc = the (xb (xa - xc - 1)))} |]

==> EX x. let cinit = fst as; cops = snd as;

ainit = fst ls; aops = snd ls

in (ALL (g, c):cinit. EX a. (g, a) : ainit & (a, c) : x) &

(ALL i c. ALL (g, a):Domain (aops i).

(a, c) : x --> (g, c) : Domain (cops i)) &

(ALL i c c’ g’. ALL (g, a):Domain (aops i).

(a, c) : x & ((g, c), g’, c’) : cops i

--> (EX a’. ((g, a), g’, a’) : aops i

& (a’, c’) : x))" : thm

In the applicability conditions of the derived rule, the first line is the lemma
r same elems and the next three lines contain the definition of the retrieve re-
lation. This process is repeated with the definitions and lemmas of ArrayStack
and ListStack, resulting in a theorem L thm, where all the definitions and auxiliary
lemmas needed for the proof are explicit. The theorem is quite large, containing
sixteen assumptions, and hence not included here. Note that at this point the trans-
formation rule can still only be applied to the ListStack data structure, since the
operations aops above are given by snd ls (which is lops), but the transforma-
tion rule can now be generalised.

5.3 Operation names in data structures

The next step in the generalisation process is to replace the function symbols of
the example data structures by variables. This allows application of the transfor-

330 E. B. JOHNSEN, C. LÜTH

mation to ListStack data structures independent of the (arbitrary) names given
to the stack operations and to the attributes of the data structure. The function
Inspect.dep above ops identifies all function symbols introduced in Isa-
belle theories extending the data structure definition in DStruct.thy, i.e. in
ListStack, ArrayStack, and the retrieve relation r.

ML> val dep_ops = Inspect.dep_above_ops DStruct.thy L_thm;

val dep_ops =

["r","as","aempty","aops","apush","apop","atop","elems",

"ls","lempty","ltop","lops","lpush","lpop"] : string list

The order in which these symbols are abstracted is important. As the definitions of
some operations may depend on others, abstraction must descend through the levels
of this dependency graph. The abstraction tactic AbsTac.rep ops thy replaces
function symbols with meta-logical variables as described in Section 3.3, one level
at a time. Following Isabelle’s convention of denoting meta-variables with a pre-
fixed ‘?’, r is replaced by the meta-variable ?r, etc. In the resulting transformation
rule nofun thm, all the function symbols of the data structures have become vari-
ables that can be instantiated with any appropriately typed functions or variables
during the development process.

5.4 A Polymorphic transformation rule for stacks

Recall from Section 3.4 that type constants in a transformation rule can be replaced
by type variables when no function symbols of the rule belong to the type. This
was achieved in the previous section, so the procedure can now be applied to the
running example and the integer type is replaced by a type variable, by means of
the Abstract.abstract type abstraction tactic:

val abs_rule = Abstract.abstract_type

(Type("integer", [])) ("a", ["HOL.type"]) nofun_thm;

In the resulting transformation rule abs rule, the integer type has been replaced
by a variable of type HOL.type, which can be instantiated by any type defined in
Isabelle’s higher-order logic. The derived transformation rule abs rule can be
applied to stacks of a variety of types by instantiating the meta-variable ?a of the
rule with the abstract data structure. The entire rule is included and explained in
detail in Appendix A.

5.5 Reusing the transformation rule

Reuse of the derived transformation rule is now considered. Assume therefore a
stack of strings, specified by a list as in Section 4.4:

data structure StringList ≡
global (i : String, o : String)
local l : List[String]
init empty ≡ {((i, o), l) | l = []}

ABSTRACTING REFINEMENTS 331

ops scons ≡ i = i′ ∧ o = o′ ∧ l′ = Cons(i, l)
stl ≡ l , [] ∧ i = i′ ∧ o = o′ ∧ l′ = tl(l)
shd ≡ l , [] ∧ i′ = i ∧ o′ = hd(l) ∧ l′ = l

The definitions resemble those of ListStack, but have different operation names
in addition to the new type. The abstracted transformation rule is applied to
this data structure and an array of strings is obtained. In detail, suppose that
StringList.sl is the Isabelle constant defining StringList (corresponding to ls
for ListStack above).

First, the variable ?a in the transformation rule is instantiated with the StringList
data structure StringList.sl. This instantiates the type of globalstate to the
product of strings. Second, the variables for the list operations (such as ltop)
are instantiated with the corresponding definitions from StringList. The result is a
rule where the first proof obligations are exactly the definitions of the operations
stl, scons, etc. These proof obligations are automatically discharged by resolu-
tion with the corresponding definitions stl def, scons def, etc. In the resulting
theorem, the definition of the stack of strings as arrays can be retrieved from the
applicability conditions of the rule:

?atop == {(((r, ra), ra, rb), (rc, rd), re, rf).

rc = r & rd = the (rb (ra - 1))

& re = ra & rf = rb};

?apop == {((r, ra, rb), rc, rd, re). rc = r

& rd = ra - 1 & re = rb};

?apush == {(((r, ra), rb, rc), (rd, re), rf, rg).

(rd, re) = (r, ra) & rf = rb + 1

& rg = rc(rb|->r)};

!!u. ?aops u == case u of push => ?apush

| pop => ?apop | top => ?atop;

?aempty == {(g, l). l = (0, Map.empty)};
?c == (?aempty, ?aops);

The above definitions completely define StringArray, because ?c is the trans-
formed specification. The transformation rule also provides a definition of the
retrieve relation and a correctness proof for the transformation.

6. Related work

6.1 Transformational development systems

Several authors have studied implementations of transformation or window infer-
ence systems in theorem provers [Anderson and Basin 2000, Butler et al. 1997,
Staples 1998, Carrington et al. 1998, Lüth and Wolff 2000, Grundy 1996, Hemer
et al. 2001, Långbacka et al. 1995]. Some of these systems may be extended, e.g.
PRT [Carrington et al. 1998] allows user addition of new transformation rules to
the system by validity proofs, and TAS [Lüth and Wolff 2000] can be instantiated
with arbitrary refinement relations.

332 E. B. JOHNSEN, C. LÜTH

A meta-logic approach to derive transformation rules is proposed by Anderson
and Basin [2000], formulating and proving theorems directly in Isabelle’s meta-
logic. However their approach does not provide guidelines on how to construct
transformation rules; in this respect they follow the invent and verify method. In
contrast, the present paper shows how general meta-level theorems can be derived
from theorems in object logics, providing a constructive strategy for deriving trans-
formation rules by generalising examples of refinements that have already been
proved.

6.2 Abstraction and proof reuse

Many approaches attempt to reuse parts of old proofs to solve new problems. In
the context of formal program development, the KIV verification system reuses
proof fragments to reprove old theorems after modifications to an initial program
[Reif and Stenzel 1993]. The approach exploits a correspondence between posi-
tions in a program text and in the proofs, so that subtrees of the original proof
tree can be moved to new positions. This depends on the underlying proof rules,
so the approach is targeted toward syntax-driven proof methods typical of pro-
gram verification. In contrast, a semantic approach is taken in M [Autexier
et al. 2002], where specifications are represented by a development graph which
distinguishes local and global axioms, theories, and links between them, in or-
der to locate changes in the specifications. In a similar vein, Schairer and Hutter
[2002] consider how proofs for theorems are affected by design changes in a speci-
fication. They propose a set of basic changes mirrored by proof transformations
that restructure the proof tree, allowing open branches in the derived proofs. The
approach allows addition and removal of datatype constructors, recursively leav-
ing new open branches or removing branches to reflect the change. Whereas
these approaches are concerned with reusing proof work in a modified specifi-
cation, our aim is to derive widely applicable transformation rules from specific
developments.

In a logical framework setting, Felty and Howe [1994] describe a generic ap-
proach to generalisation and reuse of tactic proofs. In their work, proof steps in
λProlog consist of an inference rule and a substitution. A proof is a (nested) series
of proof steps which may have open branches. Reuse is achieved by replacing the
substitutions of a proof with substitutions derived from a different proof goal. This
allows reuse of steps from abortive proof attempts, e.g. wrong variable instantia-
tions, which can to some extent be mimicked by considering different unifiers for
our derived inference rules. However, their approach cannot handle type-specific
proof rules.

In the type-theory based Coq prover, Magaud [2003] uses proof transformations
to reuse proofs across types. This is done by first establishing correspondences be-
tween basic properties (definitions and lemmas) of the present and target type, after
which properties of the present type can be systematically replaced in the proof by
those of the target type before replaying the proof. A proof of a generalised theo-
rem is not derived.

ABSTRACTING REFINEMENTS 333

7. Conclusion and future work

The intuitive appeal of stepwise formal program development stands in sharp con-
trast to the cumbersome details of discharging the proof obligations connected to
every individual development step. Such a development process needs to be sup-
ported by powerful tools. By abstracting single development steps to transforma-
tion rules, it is possible to reuse much of the proof work. This way it is possible to
construct libraries of transformation rules for standard development steps in diffe-
rent problem domains. Using such transformation libraries, focus is kept on design
rather than on proof, while correctness is automatically maintained for standard
development steps.

This paper demonstrates an abstraction process that results in generalised trans-
formation rules from specific examples of refinement. The rules are derived within
the Isabelle theorem prover and the correctness of the rules is guaranteed by con-
struction. The proposed abstraction process lifts the proof of a theorem into a
correctness proof for a derived inference rule. The process is illustrated by deriv-
ing a polymorphic transformation rule for stacks from a traditional example of data
refinement of stacks representations.

In future work, we want to integrate this abstraction method in the transforma-
tion system TAS, enabling the developer to improve the available library of trans-
formation rules during the development process. Further, we are interested in case
studies using the abstraction method to develop transformation rules in established
and widely used specification formalisms. Finally, further improvements to the
abstraction mechanism are of interest; for example, by identifying dependencies
between different occurrences of a function symbol or a type, and by mechanisms
for polytypic abstraction, making rules applicable for structures with a different
number of constructors.

References

A, P B, D. 2000. Program Development Schemata as Derived Rules. Jour-
nal of Symbolic Computation 30 , 1 (July), 5–36.

A, S, H, D, M, T, S, A. 2002. The Development
Graph Manager M. In Proc. 9th Int. Conf. Algebraic Methodology and Software Technol-
ogy (AMAST’02) , Volume 2422 of Lecture Notes in Computer Science. Springer, 495– 501.

B, R-J, G, J, W, J. 1997. Structured Calculational Proof.
Formal Aspects of Computing 9, 5–6, 469–483.

B, R-J W, J. 1998. Refinement Calculus: a Systematic Introduction.
Springer.

B, F L., et al. 1985. The Munich Project CIP. The Wide Spectrum Language CIP-L .
Lecture Notes in Computer Science. Springer, Berlin.

B, S W, M. 1999. Inductive Datatypes in HOL — Lessons Learned
in Formal-Logic Engineering. In 13th Int. Conf. on Theorem Proving in Higher Order Logics
(TPHOLs’99) , Volume 1690 of Lecture Notes in Computer Science. Springer, 19–36.

B, M. 1997. Compositional Refinement of Interactive Systems. Journal of the ACM 44 , 6
(Nov.), 850–891.

B, R M. D, J. 1977. A Transformational System for Developing Recur-
sive Programs. Journal of the ACM 24 , 1 (Jan.), 44–67.

334 E. B. JOHNSEN, C. LÜTH

B, M, G, J, L, T, Ř̇, R, W, J.
1997. The Refinement Calculator: Proof Support for Program Refinement. In Proc. Formal
Methods Pacific’97. Springer, 40–61.

C, D, H, I, N, R, W, G, W, J. 1998. A Program
Refinement Tool. Formal Aspects of Computing 10 , 97–124.

D, O-J, M, B, N, K. 1968. (Simula 67) Common Base Lan-
guage. Tech. Report S-2, Norsk Regnesentral (Norwegian Computing Center), Oslo, Norway.

 R, W-P E, K. 1998. Data Refinement: Model-Oriented Proof
Methods and their Comparison, Volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, New York, NY.

D, J B, E A. 2001. Refinement in Z and Object-Z . Formal Approaches to
Computing and Information Technology (FACIT). Springer.

F, A H, D. 1994. Generalization and Reuse of Tactic Proofs. In Fifth Int. Conf.
on Logic Programming and Automated Reasoning (LPAR’94) , Volume 822 of Lecture Notes
in Computer Science. Springer, 1–15.

G, J. 1996. Transformational Hierarchical Reasoning. The Computer Journal 39, 4 (May),
291–302.

H, R, H, F, P, G. 1993. A Framework for Defining Logics.
Journal of the ACM 40 , 1 (Jan.), 143–184.

H, D, H, I, S, P. 2001. Refinement Calculus for Logic Programming
in Isabelle/HOL. In 14th Int. Conf. on Theorem Proving in Higher Order Logics (TPHOLs’01) ,
Volume 2152 of Lecture Notes in Computer Science. Springer, 249–264.

H, C. A. R. 1972. Proofs of Correctness of Data Representations. Acta Informatica 1, 271–281.
H, B K-B̈, B. 1993. PROSPECTRA: Program Development

by Specification and Transformation. Volume 690 of Lecture Notes in Computer Science.
Springer.

H, Ǵ P. L, B. 1978. Proving And Applying Program Transformations Ex-
pressed With Second-Order Patterns. Acta Informatica 11, 1, 31–55.

J, E B L̈, C. 2003. Abstracting Theorems for Reuse. Submitted for
publication.

L, T, Ř̇, R, W, J. 1995. TkWinHOL: A Tool for
Window Interference in HOL. In 8th Int. Workshop on Higher Order Logic Theorem Proving
and its Applications, Volume 971 of Lecture Notes in Computer Science. Springer, Aspen
Grove, Utah, USA, 245–260.

L̈, C W, B. 2000. TAS — A Generic Window Inference System. In
13th Int. Conf. on Theorem Proving in Higher Order Logics (TPHOLs’00) , Volume 1869 of
Lecture Notes in Computer Science. Springer, 405–422.

M, N. 2003. Changing Data Representation within the Coq System. In 16th Int. Conf. on
Theorem Proving in Higher Order Logics (TPHOLs’2003) , To appear in Lecture Notes in
Computer Science. Springer.

N, T, P, L C., W, M. 2002. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic. Volume 2283 of Lecture Notes in Computer Science. Springer.

P, L C. 1990. Isabelle: The Next 700 Theorem Provers. In Logic and Computer
Science, Odifreddi, Piergiorgio, Editor. Academic Press, 361–386.

P, L C. 1997. Mechanizing Coinduction and Corecursion in Higher-order Logic.
Journal of Logic and Computation 7, 2 (Apr.), 175–204.

P, F. 2001. Logical Frameworks. In Handbook of Automated Reasoning, Robin-
son, Alan and Voronkov, Andrei, Editors. Elsevier Publishers, 1063–1147.

R, W, S, G, S, K, B, M. 1998. Structured
Specifications and Interactive Proofs with KIV. In Automated Deduction: A Basis for Applica-
tions. Volume II, Systems and Implementation Techniques, Bibel, Wolfgang and Schmidt, Pe-
ter H., Editors. Kluwer Academic Publishers.

R, W S, K. 1993. Reuse of Proofs in Software Verification. In Proc. of
Foundations of Software Technology and Theoretical Computer Science, Volume 761 of Lec-
ture Notes in Computer Science. Springer, 284–293.

R, A. W. 1998. The Theory and Practice of Concurrency. Prentice Hall.

ABSTRACTING REFINEMENTS 335

S, D. 2000. Algebraic Specification and Program Development by Stepwise Refine-
ment. In Proc. 9th Intl. Workshop on Logic-based Program Synthesis and Transformation
(LOPSTR’99) , Volume 1817 of Lecture Notes in Computer Science. Springer, 1–9.

S, A H, D. 2002. Proof Transformations for Evolutionary Formal Soft-
ware Development. In Proc. 9th Int. Conf. Algebraic Methodology and Software Technology
(AMAST’02) , Volume 2422 of Lecture Notes in Computer Science. Springer, 441–456.

S, D R. 1985. The Design of Divide and Conquer Algorithms. Science of Computer
Programming 5, 1 (Feb.), 37–58.

S, D R. 1990. KIDS: a Semiautomatic Program Development System. IEEE Transactions
on Software Engineering 16 , 9 (Sept.), 1024–1043.

S, D R. 1999. Mechanizing the Development of Software. In Calculational System De-
sign, Broy, Manfred and Steinbrüggen, Rolf, Editors. Proc. of the Marktoberdorf Int. Summer
School, NATO ASI Series. IOS Press, Amsterdam, 251–292.

S, M. 1998. A Mechanised Theory of Refinement . PhD thesis, University of Cambridge.
W, J C. P. D, J. 1996. Using Z: Specification, Refinement, and Proof . Interna-

tional Series in Computer Science. Prentice Hall, New York, N.Y.

Appendix A. The derived transformation rule in Isabelle

This appendix presents the transformation rule derived in Section 5 of the paper.
The rule is of the form [[A]] =⇒ c v a (where A represents the subgoals of the proof
rule, cf. the modus ponens rule in Section 3.1). All the definitions and lemmas that
were made explicit in the abstraction process can now be found as subgoals in the
derived proof rule. In order to increase the readability of the rule, the formulas
of A (the applicability conditions) have been arranged from top to bottom, first
the definitions of ListStack, then the definitions of ArrayStack, and finally the
definition of the retrieve relation, each group of definitions is followed by corre-
sponding lemmas.

"[| ?lpop == {((r, ra), a, b). ra ~= [] & a = r & b = tl ra};

?lpush == {(((r, ra), rb), (rc, rd), re).

(rc, rd) = (r, ra) & re = r # rb};

?ltop == {(((i, out), l), (i’, out’), l’).

l ~= [] & i’ = i & out’ = hd l & l = l’};

!!u. ?lops u == case u of push => ?lpush

| pop => ?lpop | top => ?ltop;

?lempty == {(g, l). l = []};

?a == (?lempty, ?lops);

!!u ua ub. ?elems u ua = ub

==> ?elems (u - Suc 0) ua = tl ub;
!!u ua ub uc. ?elems u ua = ub

==> ?elems (Suc u) (ua(u|->uc)) = uc # ub;

?atop == {(((r, ra), ra, rb), (rc, rd), re, rf).

rc = r & rd = the (rb (ra - 1))

& re = ra & rf = rb};

?apop == {((r, ra, rb), rc, rd, re).

rc = r & rd = ra - 1 & re = rb};

?apush == {(((r, ra), rb, rc), (rd, re), rf, rg).

336 E. B. JOHNSEN, C. LÜTH

(rd, re) = (r, ra) & rf = rb + 1 & rg = rc(rb|->r)};

!!u. ?aops u == case u of push => ?apush

| pop => ?apop | top => ?atop;

?aempty == {(g, l). l = (0, empty)};
?c == (?aempty, ?aops);

!!u ua ub. ((u, ua, ub) : ?r) = (u = ?elems ua ub);

?r == {(r, ra, rb). ra = length r &

(ALL rc. 0 <= rc & rc < ra
--> r ! rc = the (rb (ra - rc - 1)))} |]

==> ?c [= ?a" : thm

All function symbols have been abstracted in the transformation rule; the prefix
‘?’ in the operation symbols is Isabelle’s notation for meta-variables. The integer
type of the example refinement has been abstracted and replaced by a type variable.
For example, the operation lpop has been abstracted into

?lpop::(((?a type * ?a type) * ?a type list)

* (?a type * ?a type) * ?a type list) set

where ?a type has replaced the integers, so (?a type * ?a type) represents
the global space and ?a type list the local space before type instantiation. The
type variable ?a type is instantiated along with the other meta-variables when the
transformation rule is applied, using Isabelle’s resolution techniques.

