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Abstract. Modular rewriting seeks criteria under which rewrite systems
inherit properties from their smaller subsystems. This divide and con-
quer methodology is particularly useful for reasoning about large systems
where other techniques fail to scale adequately. Research has typically
focused on reasoning about the modularity of specific properties for spe-
cific ways of combining specific forms of rewriting.
This paper is, we believe, the first to ask a much more general question.
Namely, what can be said about modularity independently of the specific
form of rewriting, combination and property at hand. A priori there is
no reason to believe that anything can actually be said about modularity
without reference to the specifics of the particular systems etc. However,
this paper shows that, quite surprisingly, much can indeed be said.

1 Introduction

The key properties of term rewriting systems (TRSs) are confluence and strong
normalisation. One technique for establishing these properties is modularity
which seeks criteria under which TRSs inherit properties from their smaller (and
hence easier to reason about) subsystems. This divide and conquer methodology
is particularly useful for reasoning about large systems where other techniques
fail to scale adequately.

Research originally focused on disjoint unions of term rewrite systems where
the systems do not share any operators. Here, confluence is modular [23] and
strong normalisation is modular for non-collapsing TRSs and for non-duplicating
TRSs [22]. Subsequently, a variety of alternative proof techniques have been
developed [9, 10, 16, 19]. Modularity for conditional term rewriting systems
(CTRSs) was first studied by Middeldorp [17] who showed that confluence is
modular for certain types of CTRS while strong normalisation is again only
modular in the presence of extra syntactic restrictions. Several unions permit-
ting the sharing of term constructors have been proposed but, for each of these,
confluence and strong normalisation are only modular again in the presence of
various syntactic restrictions [18, 20].

These examples demonstrate how modularity is typically studied for spe-
cific combinations of rewrite systems, or specific notions of rewriting, or specific
properties. This paper, we believe, is the first to ask what can be said about
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modularity independently of these specifics. That is we do not ask about the
modularity of confluence, or termination, or weak termination, but rather seek
a general modularity theorem applicable to all of these properties. Similarly, we
wish to get away from modularity for specific notions of rewriting such as term
rewriting, or graph rewriting, or equational rewriting and instead prove general
modularity results applicable to as many forms of rewriting as possible. And fi-
nally, we wish to avoid commitment to modularity for specific ways of combining
rewrite systems but rather extract conditions that are uniformly applicable to a
variety of different such mechanisms.

A priori, there is no reason to believe that such an abstract theory of modular-
ity should exist. Certainly it is hard to see how the conditions on the modularity
of confluence, strong normalisation etc. are instances of the same general theme.
This paper demonstrates that such a theory is indeed possible. Of course, it will
not be able to magically prove the most general results for any specific situation.
Rather, its contribution is to provide a platform of general results which can be
instantiated for a specific situation as the need arises. In order to develop such
a theory of abstract modularity, we have to build it upon a theme which unifies
key features of specific modularity results. We believe the key concept in modu-
larity is the notion of layer structure on the terms of the combined TRS which
describes how rewrites in the combined TRS decompose into rewrites from the
component TRSs. If rewrites do not preserve this layer structure (i.e. if there are
collapsing rewrites), then non-trivial interactions between the layers may occur
and modularity may fail.

Our results show that, providing rewrite systems preserve the layer struc-
ture, properties are inherently modular. We were quite surprised to find such
a powerful result by using the techniques we have developed in our previous
work [11–13]. To this end, we generalised our approach by treating not just term
rewriting systems, but all rewrite systems that arise as monads, and by abstract-
ing from specific properties to properties in general, given by a subcategory of
the base.

Our general modularity result requires two conditions: i) that the rewrite
systems do not collapse layers which is reflected in a condition on the monad
representing the rewrite system; and ii) that the semantic and syntactic treat-
ment of properties coincide. The latter condition ought to be automatic in the
sense that it should hold for any reasonable property; it does for all well-known
ones, such as confluence, termination and weak termination. Overall, we believe
that this paper delivers on the promise of clean and simple results in rewriting
based upon the categorical methodology.

The paper is structured as follows: In Sect. 2, we explain our abstract notion
of the data structures we rewrite. In Sect. 3, we show how to model the actual
rewriting by monads. In Sect. 4, we develop our semantic notion of properties of
rewriting systems, and show they coincide with the well-known syntactic prop-
erties. Sect. 5 introduces an abstract notion of combining systems modelled by
monads and shows the general modularity results, the key result being Thm. 27.

For this paper, we assume a very basic knowledge of category theory (com-
prising concepts such as categories, functors, push-outs and adjoints), but will
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explain all more sophisticated concepts as they are needed, and concentrate on
examples and intuition rather than technical categorical proofs. For an introduc-
tion to category theory, see [14].

2 Abstract Data Structures

To enable our modularity results to as many forms of rewriting as possible,
we need to extract their common feature. One possibility are abstract reduction
systems (ARSs) which model a rewrite system by the one step reduction relation
it induces. This semantics therefore throws away the structure of the data being
rewritten, including the key concepts of substitution and layer which are central
to modularity. Thus, it is unlikely that the ARS semantics of rewriting can be
used as the basis of an abstract theory of modularity.

For us, rewriting consists of a data structure where subterms can be replaced
with other terms and, as such, substitution is the fundamental property. Thus,
we propose to use monads as they take as primitive an abstract notion of data
endowed with a well behaved notion of substitution.

Definition 1 (Monad). A monad T = 〈T, η, µ〉 on a category C is given by a
functor T : C → C, called the action, and two natural transformations, η : Id→ T ,
called the unit, and µ : TT → T , called the multiplication of the monad, satisfy-
ing the monad laws: µ · Tη = Id = µ · ηT , and µ · Tµ = µ · µT .

Good introductions to the theory of monads in our sense are [2, 15, 21]. The
canonical example of a monad is the one arising from the term algebra over a
signature:

Definition 2 (Signature). A (single-sorted) signature consists of a function
Σ : N→ Set. The set of n-ary operators of Σ is defined Σn

def= Σ(n)

Definition 3 (Term Algebra). Given a signature Σ and a set of variables X,
the terms TΣ(X) built over X are defined inductively:

x ∈ X
x ∈ TΣ(X)

f ∈ Σn t1, . . . tn ∈ TΣ(X)
f(t1, . . . , tn) ∈ TΣ(X)

Lemma 4. The map X �→ TΣ(X) defines a monad TΣ on Set.

Proof. Given a function f : X → Y , renaming of variables defines a function
TΣ(f) : TΣ(X)→ TΣ(Y ). Every variable is a term, which gives us a family
ηX : X → TΣ(X) while substitution defines a family µX : TΣTΣ(X)→ TΣ(X).
The monad laws state that substitution behaves correctly, i.e. is associative and
has variables as left and right units, which is easily checked by induction. ��

Our interest in monads is that they describe a number of other computationally
interesting data structures possessing well behaved notions of substitutions, as
the following examples show.



Abstract Modularity 49

Example 5 (Strings). The map sending an alphabet X to the set X∗ of words
over X extends to a monad T∗ : Set→ Set. Substitution here takes a word con-
sisting of words and flattens it into one word.

Example 6 (Groups and Rings). The map sending X to the free group G(X)
over X extends to a monad. Similarly, the map sending X to the set of free
polynomials over X extends to a monad as well. In both cases, substitution is
defined structurally, as for the term algebra above.

These examples can be generalised to any algebraic theories:

Example 7 (Algebraic theories). Given an algebraic theory 〈Σ, E〉 where Σ is a
signature and E a set of equations, let ∼E be the congruence generated from E,
and T〈Σ,E〉(X) = TΣ(X)/ ∼E be the term algebra quotiented by this congruence,
then the map X �→ T〈Σ,E〉(X) extends to a monad.

Furthermore, monads have another key advantage when applied to modularity,
in that the interleaving of monads models the layer structure, e.g. TΣ(TΩ(X))
consists of terms with a Σ-layer over a Ω-layer with variables built from X .

As a mild technical condition, we require these monads to be finitary which
corresponds to the fact that the data structure under question is built induc-
tively. Formally, a monad is finitary iff it preserves filtered colimits [1] (i.e. T (X)
is built from a finite subset of X). Finitary monads on a category C and monad
morphisms form a category Mon(C). Motivated by all of this, we make our first
definition of a rewrite structure, which is the structure containing the data over
which rewriting takes place.

Definition 8. A rewrite structure is a finitary monad T : Set→ Set.

To summarise, this section observed that in order to do rewriting, the funda-
mental properties required were the construction of some form of term calculus
and a notion of substitution for that calculus. These concepts are perfectly cap-
tured by a rewrite structure.

3 Abstract Rewriting

A monad on Set builds a set of terms from a set of variables. Incorporating
rewrites into this framework means that we are actually building a relation of
terms and rewrites between them from a relation consisting of a set of variables
and (what we consider to be) rewrites between these variables, called variable
rewrites. That variables rewrite to other variables may seem odd from a rewriting
perspective but in modularity these variables represent terms from sublayers,
and terms in a sublayer certainly can rewrite to others. Further, as we shall see,
adding variable rewrites does not affect properties such as confluence.

The exact nature of these relations depends upon what we are interested in
studying. If we are interested in one-step reduction or one-step completion, we
take relations, if we are interested in many-step reduction, we take preorders, or
if we are interested in labelled rewriting, graphs or categories. For termination,
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we want to preserve reduction sequence, so we take transitive relations or well-
orders. Here, the base category is the category Pre of preorders and monotone
morphisms between them, but the reader should be aware that our general treat-
ment can, and will be used with other base categories. We could make the fol-
lowing definitions parametric over the choice of Pre, and work with an arbitrary
category V such that there is an adjunction as in Lemma 9 below, but we prefer
a more concrete definition here.

Lemma 9. The functor D : Set→ Pre, which maps a set to the discrete preorder
over it, is left adjoint to the functor V : Pre→ Set, which maps a preorder to its
underlying set.

Proof. The adjunction is establishedby the isomorphism Pre(DX,P )∼=Set(X,VP )
for any set X and preorder P . ��
In fact, D also has a left adjoint C : Pre→ Set, which maps preorder to its set of
connected components, and V has a further left adjoint, which maps a set to the
total order on it. Now, there are a number of different ways of adding rewrites
to a rewrite structure, that is to turn a monad on Set into a monad on Pre:

1. We can define the monad MR : Pre→ Pre to send a preorder X to the pre-
order defined as the abstract reduction semantics where there are no vari-
ables, but constants from X with associated variable rewrites. However, we
still need to define the ARS semantics for each form of rewriting.

2. We can define the action of the monad concretely as in our previous work on
term rewriting systems, e.g. [11, 12]. The advantage of this is that it gives a
precise description of the rewrite monad, but at the cost of having to repeat
the exercise every time we change the data structure.

3. We can define a rewrite presentation to be a parallel pair in Mon(Set), lift
to Mon(Pre) and take the coinserter. This was the approach in [3]. The
advantage of this approach is that it gives a precise and abstract formation
of the rewrite system associated to any presentation, but at the cost of the
technical overhead of coinserters.

In this paper, we choose an axiomatic approach which allows us to derive as
many results as possible on a general level, and then instantiate them.

Definition 10. Let M be a rewrite structure. An M -rewrite system is a finitary
monad MR : Pre→ Pre such that MR is a lifting of M , i.e. the following diagram
commutes:

Pre
MR � Pre

Set

V
�

M
� Set

V
�

The condition says that the monad MR which calculates terms and rewrites
agrees with the monad M on the terms. Thus one can think of MR as acting as
M on terms, but adding in extra rewrites.
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We have been speaking informally of the ARS semantics for rewrite systems,
but now we make this precise. If R is a rewrite system, one usually fixes a
countable infinite set of variables X , and considers the resulting ARS (which
would be MR(X) here). But we can be more specific, as all countable infinite
sets are isomorphic to the set N of natural numbers, so we take the discrete
preorder DN as the canonical representation of all variables, and call MR(DN)
the representing ARS. Thus, the difference between the monadic semantics and
the ARS semantics is that the monadic semantics builds terms and rewrites over
an arbitrary, not fixed, preorder of variables and variable rewrites. This extra
flexibility is precisely what is required by modular rewriting as we can instantiate
the variables and variable rewrites to be the terms and rewrites from a sublayer.

Given a rewrite structure M , there is always an empty (or discrete) M -rewrite
system M∅ with no rewrite rules.

Lemma 11. For a rewrite structure M , there is a free M -rewrite system M∅.

Proof. The functor V D : Mon(Pre)→ Mon(Set) has a left adjoint, denoted L, as
shown in [3]. This computes the free lifting M∅ = L(M). ��
If MR is an M -rewrite system, then by definition MV = VMR. Precomposing
with D, and noting VD = 1, we get M = VMRD, and hence a canonical em-
bedding κ : M∅ →MR which embeds the empty M -rewrite system in any other
M -rewrite system. Given a M -rewrite system, we will often want to abstractly
use the idea that rewrites created by MR are either created by an underlying
rewrite system or by the variable rewrites. This is captured by asking that the
diagram (1) be a push-out, where ε is the counit of the adjunction of Lemma 9.

M∅(DVX)
M∅ε� M∅X

MR(DVX)

κDVX
�

MRε
� MRX

κX
�

(1)

We say an M -rewrite system MR is cocartesian iff κ : M∅ →MR is a cocartesian
natural transformation, i.e. all components form push-out squares. Most M -
rewrite systems are cocartesian, because MR(X) is the coproduct of the monads
representing R and representing the rewrites of X .

We finish this section with some examples.

Example 12 (Term Rewriting). A term rewriting system 〈Σ, R〉 has as a rewrite
structure the term algebra monad TΣ and as a TΣ-rewrite system the monad
T〈Σ,R〉 which sends a preorder X to the smallest ordered Σ-algebra T〈Σ,R〉(X)
containing X for which R is sound [3]. Cocartesianness follows from the inductive
construction of T〈Σ,R〉(X) [11].

Example 13 (String Rewriting and Gröbner Bases). String rewriting can be re-
garded as rewriting over the free monoid, i.e. words, while Gröbner bases can be
regarded as rewriting over free rings, i.e. polynomials. The rewrite structure here
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is given by Example 5 and 6, with MR adding in a reduction structure between
the words and polynomials respectively.

Thus, for example, Gröbner bases have as a rewrite system the monad that
computes for a preorder X , the smallest preorder on the free ring over X con-
taining X for which the ring operations are monotone and for which R is sound.

Example 14 (Equational Rewriting). The rewrite structure for an equational
term rewriting system 〈Σ, E, R〉 is the monad T〈Σ,E〉 from Example 7, and as
a T〈Σ,E〉-rewrite system the monad T〈Σ,E,R〉 which sends a preorder X to the
smallest preorder on T〈Σ,E〉(X) for which the Σ-constructors are monotone and
for which R is sound. Cocartesianness follows from cocartesianness of T〈Σ,R〉.

Further examples could be developed, e.g. the rational monad suffices as a
rewrite structure to consider rational rewriting. Recent work on abstract syntax
shows that structures with variable binding are monads. This monadic approach
to higher order rewriting has been developed by Hamana [8].

These examples follow the general pattern. Given a rewrite structure M , a
M -rewrite system is given by triples (Y, l, r) where Y is a set and l, r are elements
of MY . The associated M -rewrite system MR maps a preorder X to the smallest
preorder on M(X) for which the operations in M are monotone and for which
the interpretations of l is greater than that of r. When this order relation is
defined inductively, the cocartesianness of κ : M∅ →MR follows.

To summarise, M -rewrite systems provide a model of rewriting covering a
large variety of different forms of rewriting. In fact, given any underlying data
structure for rewriting which forms a monad, i.e. possesses a well behaved notion
of substitution, we can model rewriting over that data structure by a monad
which sends a preorder to the smallest preorder over MV(X) containing X ,
which forms an M -algebra which validates the rewrites.

4 Abstract Properties

Properties of rewrite systems are often given via properties of the associated
abstract reduction system, e.g. a TRS is confluent iff the rewrites built from the
TRS using a countably infinite set of variables form a confluent preorder. If we
are going to reason about rewriting using M -rewrite systems, we need a definition
of properties in terms of the representing monad MR. The direct translation is
that MR satisfies P if the representing ARS M(DN) does. However, given the
need for variable rewrites in modularity, it is only reasonable to ask the relation
MR(X) to satisfy a property if the relation X does, and thus an alternative
definition would be that MR satisfies P iff it preserves P . We say that property
is monadic if these two notions coincide:

Definition 15. Let P be a property of preorders, characterising a subcategory
K of Pre. We say P is monadic if the following holds: M(DN) ∈ K iff whenever
X ∈ K then MR(X) ∈ K.

If this definition is sensible it must be satisfied by the standard properties such as
confluence and strong normalisation, so we first check if these two are monadic.
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4.1 Abstract Confluence

In this section we prove that confluence is monadic according to Def. 15, i.e.
a finitary monad MR : Pre→ Pre preserves confluence iff its representing ARS
MR(DN) is confluent. One direction is easy: if MR preserves confluence, then
since DN is discrete and hence trivially confluent, MR(DN) is also confluent.

Note that in the following cocartesianness is not required , and that previous
results [11, 12] restricted to the case where MR is the representing monad for a
TRS and used an explicit inductive construction of this monad.

To prove our result, we use a characterisation of confluence in terms of maps.

Lemma 16. If X is a finite preorder then it is confluent iff the map f :X→DCX
has a right adjoint g : DCX → X, denoted as f 	 g.

Proof. Let X be confluent. To each connected component of X assign an upper
bound of the connected component which exists by confluence and finiteness.
This defines a monotone function g : DCX → X which satisfies fg = 1 and
1→ gf , establishing f 	 g. Conversely, given such a right adjoint, it is obvious
that each connected component has a minimal element, making X confluent. ��
Adjoints like the above allow us to reflect confluence.

Lemma 17. Let X, Y be preorders, and maps f : X → Y , g : Y → X such that
1→ gf . Then if Y is confluent so is X.

Proof. Let b← a→ c be a span in X with completion fb→ d← fc in Y , which
has an image gfb→ gd← gfc in X . Since b→ gfb, and c → gfc in X , gd is a
completion of b← a→ c, hence X is confluent. ��
Lemma 18. Let M = 〈M, η, µ〉 be a monad such that MDN is confluent, then
MDX is confluent for every finite X.

Proof. We proceed by assuming that MDX is inhabited, e.g. by ∗ ∈MDX . We
can assume this without loss of generality, as given any span b← a→ c in MDX
which needs completing, we can take ∗ = a.

With X finite, we have f : X ↪→ N and hence Df : DX ↪→ DN, and we can
define a map g : DN→MDX by cases so that the following commutes:

DX
Df ��

ηDX ����
��

��
���

DN

g
��

MDX

g(x) =

{
ηDX(x) for x ∈ DX

∗ for x �∈ DX

Now g� : MDN→MDX (the Kleisli extension of g) is defined as g� = µDX ·Mg,
and hence satisfies g� ·MDf = µDX ·Mg ·MDf = µDX ·MηDX = 1. This allows
us to reflect confluence of MDN along MDf : MDX →MDN using Lemma 17,
making MDX confluent. ��
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Lemma 19. Let M be a functor M : Pre→ Pre taking finite discrete preorders
to confluent preorders. Then M also takes finite confluent preorders to confluent
preorders.

Proof. Let X be a finite confluent preorder. By Lemma 16 there are two adjoint
maps f 	 g :X→DCX , lifting to two adjoint maps Mf 	 Mg :MX→M(DCX).
By Lemma 18, the preorder M(DCX) is confluent and hence by Lemma 17, MX
is confluent. ��
The following lemma uses the finite accessibility of Conf, which is a technical
property and means that all confluent preorders are finitely generated. This
allows us to deduce confluence of infinite preorders from the confluence of their
finite suborders. We can then establish the monadicity of confluence as follows:

Lemma 20. If M is a finitary monad and MDN is confluent then MX is con-
fluent whenever X is.

Proof. By Lemma 18, MDX is confluent for finite X if MDN be confluent.
By Lemma 19, MP is confluent for every finite confluent preorder P . Finally,
use finite accessibility of Conf to write any confluent P as a filtered colimit
P ∼= colimPi of finite confluent preorders. We can now write

MP ∼= M colimPi
∼= colimMPi

concluding that MP can be written as a filtered colimit of confluent preorders
and is therefore confluent. ��

4.2 Abstract Strong Normalisation

Strong normalisation can be treated in a similar way. We do need a different base
category though, as we need to exclude identity rewrites. First a few preliminar-
ies. Let Trans be the category of transitive, but not necessarily reflexive, orders
and monotone functions between them, and let WOf be the full subcategory of
well-founded, finitely branching orders. These are the strongly normalising or-
ders that we are interested in. For any X ∈ Set, we have the discrete order on X
which is transitive but not reflexive (and of course in WOf ), which by abuse of
language we call DX ; and similarly, for the underlying set of a transitive order
Y we use VY . This overloading of notation makes sense, as we are now using a
different instance of Definition 10 (with Trans for Pre).

To characterise WOf algebraically, we use maps into and from ω, the natural
numbers ordered by the strictly-greater relation > (or strict reverse inclusion),
and their dual ωop with the reversed order, as follows.

Lemma 21. If X ∈ Trans, then X ∈ WOf iff there is a map X → ω. If X is
not in WOf then there is a map ωop → X.

Note the finite branching is required to ensure that to each element of a well-
founded order we can assign an element of ω (since each element only reduces
to a finite number of direct successors), and that this assignment is monotone.
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We now show that strong normalisation is monadic. According to Def. 15,
we need to show that given an M -rewriting system MR, MR(DN) is SN iff the
monad MR preserves strong normalisation, or equivalently, restricts to WOf .
One direction is easy: if MR preserves SN, then since DN is discrete and hence
trivially well-founded, MR(DN) is also SN. Our aim is to show the converse, and
as with confluence, we build up to our result systematically. Note that opposed
to confluence, we now need MR to be cocartesian.

The first result shows that we can show strong normalisation by replacing all
variables with a canonical element. For this, let 1 be the one-element set. Then,
there is exactly one map !X : X → D1 in Trans if and only if X is discrete as the
map needs to be monotone and D1 has an empty order structure.

Lemma 22. Let T : Trans→ Trans and TD1 ∈WOf , then TDX ∈WOf for all
sets X.

Proof. By Lemma 21, there is a map TD1 → ω. Since DX is discrete, there is
a map D!X : DX → D1. Applying T and composing with the first map gives a
map TDX → ω, hence by Lemma 21,TDX ∈ WOf . ��
Now observe that the free lifting M∅ of the monad M is strongly normalising
because the only rewrites in M∅ are variable rewrites. The second main step in
showing that normal SN implies monadic SN is to show that adding an order
structure to the variables does not affect SN:

Lemma 23. Let MR be a cocartesian M -rewrite system with κ : M∅ →MR a
cocartesian transformation. If MR(D1) is SN and X is SN, then MRX is SN.

Proof. We know that M∅X and by Lemma 22 MR(DVX) are well-founded and
hence there are maps α1 : MR(DVX)→ ω and α2 : M∅X → ω. α1 and α2 do not
form a cone over the square in Diagram (2), i.e. α1 · κ �= α2 ·M †ε, so we define
new maps β1 : MR(DVX)→ ω and β2 : M∅X → ω by

β1(t) = max{α1(t), α2(t)} β2(t) = max{α1(t), α2(t)}
This can be done as all the orders mentioned above have the same carrier. That
the βi are monotone is easily checked and, since they have the same underlying
function, we have a cone over the square in diagram (2), and since this is a push-
out square (because of the cocartesianness of MR), we have a map MRX → ω
as required.

M †DVX
M †ε ��

κ
��

M †X

κ
��

β2

��

MR(DVX)
MRε

��

β1
��

MR(X)

���
�

�
�

�

ω

(2)

��
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Putting all the pieces together, we get the main result:

Lemma 24. Let MR be a cocartesian M -rewrite system. The ARS MR(DN) is
SN iff the monad MR is SN.

Summing up this section, we have shown that confluence and SN are monadic,
i.e. their usual definition in terms of the representing ARS coincides with them
being preserved by the monad representing an M -rewrite system.

5 Abstract Combinators

Modularity deals with combinations of systems, so we are now going to consider
the combination of M -rewrite systems. We do so by defining combinators for
putting together the representing monads. The appropriate categorical construc-
tion here is the colimit, but computing the colimit of monads in full generality
is a technically involved exercise. Even if we restrict ourselves to the coproduct,
corresponding to the disjoint union M -rewrite systems, the construction is very
unwieldy, and hence much research has recently focused on developing simpler
algorithms which are correct in specific situations. Ideal monads are one such
situation which correspond to the idea of layers being non-collapsing.

5.1 Ideal Monads

Intuitively, ideal monads are monads whose variable part can be separated from
the non-variable part. Formally:

Definition 25 (Ideal Monad). A monad T = 〈T, η, µ〉 is ideal iff there is a
functor T0 such that T = Id + T0, the unit is the left injection and there is a
natural transformation µ0 : T0T → T0 such that

T0T

µ0

��

inrT �� TT

µ
��

T0
inr

�� T

where inr : T0 → Id + T0 is the right injection into the coproduct.

We write ideal monads in the form Id+T0 for simplicity (where Id is the identity
functor) and leave the restricted form of multiplication µ0 implicit. A monad
morphism f : Id + T0 → R whose source is an ideal monad has its action on Id
forced by the monad laws and is hence of the form [ηR, f0] where f0 : T0 → R.
Examples of ideal monads over Set include the term monads TΣ, the string and
ring monads from Examples 5 and 6, and in general any algebraic theory T〈Σ,E〉
where both sides of every equation are either variable terms or non-variable
terms; hence, a counter-example is the group monad from Example 6.

The fundamental observation behind the construction of the coproduct R+S
of two ideal monads R = Id + R0 and S = Id + S0 is that R + S should contain
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R and S as submonads, and further, that R + S should be closed under the
application of R0 and S0. Hence, R + S should consist of alternating sequences
beginning from R0 or S0, and we ask for the least functors satisfying the following
mutually recursive equations:

T1
∼= R0(Id + T2) T2

∼= S0(Id + T1).

The solution is computed as the least fixpoint of a functor Φ on the product
category (Pre→ Pre)× (Pre→ Pre) (so Φ takes pairs of functors as arguments):

〈T 1, T 2〉 = µΦ Φ〈F, G〉 = 〈R0 · (Id + G), S0 · (Id + F )〉 (3)

To solve the fixpoint equation, note that the functor c0 : Pre→ Pre which
constantly returns the initial object is initial in the functor category Pre →
Pre. We can then use the following standard construction: for a finitary functor
F : C → C, the least fixpoint µF is given by the colimit of the following chain (if
it exists and there is an initial object 0, with ! : 0→ X the unique map out of
the initial object):

0
! � F0

F ! � F 20
F 2!� F 30 . . . (4)

Now, intuitively T1 consists of elements in R + S whose top layer is a non-
variable R-layer (captured by the use of R0) and whose next layers are either
variables or a non-variable S layer, etc. In our opinion, this is a very elegant
way of capturing the layer structure in the disjoint union of two systems. The
following result proves our intuition correct and can be found in [7].

Theorem 26. The action of the coproduct of ideal monads Id + R0 and Id + S0

is the functor T = Id + (T1 + T2), where T1 and T2 are defined as in (3).

The central result of this paper is that those rewrite systems whose representing
monad is ideal have good modularity properties and, further, that these are
actually rather easy to derive. Note that Theorem 26 holds for all ideal monads,
i.e. all ideal M -rewrite systems, not only term-generated ones. We now prove the
central theorem from which all our modularity results can be uniformly derived.

Theorem 27. Let P be a monadic property represented by a subcategory K of
Pre. If K has coproducts, an initial object and ω-colimits, then P is modular for
the disjoint union of ideal M -rewriting systems.

Proof. Let R and S be ideal M -rewriting systems satisfying P . To show that
their disjoint union has the property P , we have to show that, given X ∈ K,
R + S(X) = X + T1(X) + T2(X) is in K.

By Theorem 26, T1(X) and T2X are given by the initial fixpoint of Φ in (3)
at X ; i.e. the colimit of the chain (5). We know that both R0 and S0 preserve

〈0, 0〉 !� 〈R0X, S0X〉 � 〈R0(X + S0X), S0(X + R0X)〉 � . . . (5)

K, and since K has coproducts and an initial object, all objects of the chain (5)
are in K, and since K has ω-colimits, so is the fixpoint, i.e. T1(X) and T2(X).
With K having coproducts, we get that X + T1(X) + T2(X) ∈ K. ��
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We finish this section by using Theorem 27 to uniformly derive a number of
modularity results.

Example 28 (Confluence of Non-Collapsing TRSs). Take K to be the full sub-
category Conf of Pre whose objects are confluent orders. A TRS Θ is confluent
iff TΘ(DN) is confluent, where TΘ is its representing monad (Ex. 12). Using
Lemma 20, this is equivalent to TΘ being confluent.

It remains to show that confluence satisfies the preconditions of Theorem 27.
Clearly, the empty preorder (the initial object) is confluent, and the disjoint
union of two confluent preorders is confluent. Further, given an ω-chain of con-
fluent preorders, their colimit (i.e. the least upper bound) will be confluent as
well (this is the finite accessibility of Conf mentioned above), allowing us to
conclude the result.

Example 29 (Strong Normalisation for Non-Collapsing TRS). In this example,
we have to change the base category from Pre to Trans (as in Sect. 4.2), and let
K to be the category WOf of finitely branching well-founded orders. As in the
previous example, we can use Lemma 24 to show that termination of a TRS Θ
and termination of the monad TΘ coincide.

It remains to show that strong normalisation satisfies the preconditions of
Theorem 27. The empty relation is SN. The disjoint union preserves SN. WOf

actually fails to have all filtered colimits, but fortunately it does have colimits of
chains which preserve the normalisation rank, as is the case for the chain in (5).
Thus, Theorem 27 applies.

Example 30 (Adding Equations; Modularity for Equational TRSs). Let R be a
confluent non-collapsing TRS. Assume we want to add to R a fresh associative
operator ⊗ and prove the resulting system remains confluent.

The monad T〈⊗,E〉 given by the algebraic theory with one operation ⊗ and
the equation E stating associativity of ⊗ is confluent (trivially, as it contains
no rewrites); note that the base category of this monad is Pre, not Set (in fact,
we treat the algebraic theory as an equational rewrite system without rewrites).
We have already established that confluent preorders satisfy the preconditions
of Theorem 27. With TR the monad representing the TRS R, can easily deduce
that TR + T〈⊗,E〉 satisfies confluence, hence R + 〈⊗, E〉 is confluent as well.

This can be generalised to two arbitrary, non-collapsing equational term
rewriting systems: if both are confluent or SN, so will be their disjoint union.

6 Conclusion and Future Work

We have demonstrated that there is indeed a theory of modularity which ab-
stracts from the specific notion of rewriting, property and combination under
consideration. Moreover, we believe that our use of monads has helped to estab-
lish these results in an elegant and straightforward way. Underlying this is the
simple representation of the layer structure as the interleaving of monads and
the use of variable rewrites to model rewrites in sublayers. As mentioned in the
introduction, the point about these examples is not that they are the most gen-
eral results for a specific modularity problem, but rather that we have a uniform
principle that works in a variety of different situations.
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In the above, we have used Pre as the base category, and switched to Trans
when considering strong normalisation. The exact way to model this would have
been define a rewrite system as parameterised over a base category C, which
has to satisfy certain properties, but we felt this would make the exposition
more categorical and less rewriting. We have also omitted rewriting of infinite
terms as the corresponding monads are not finitary. Our methodology still works,
but requires us to work at a higher rank (with transfinite constructions), the
technicalities of which we felt would distract from the concrete term rewriting
contribution of the present paper.

The applications to graph rewriting need to be examined more closely. Graph
rewriting has the dual modularity results then normal term rewriting (i.e. con-
fluence is not modular but SN is). We can model term graphs with monads [4, 5],
but the precise relation of the monadic properties to the properties of term graph
rewriting systems is not clear.

We would like to comment on the limitations of this work. Higher-order
systems with variable binding are essentially not covered at all, because although
this can be modelled in the monad framework [6], higher-order systems are not
ideal monads (the reason is that free variables can be captured when building a
new layer).

In future work we wish to make these ideas accessible to a wider audience
by developing many more different examples and applications. We also plan to
extend the methodology to other methods of combining rewrite systems than
the disjoint union, in particular modelling constructor sharing systems, where
first tentative steps have already been taken.
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