Forward with Hoare!

2009: Tony Hoare is 75 and Hoare Logic is 40 !
An Axiomatic Basis for
Computer Programming
C. A. R. Hoare, 1969

Overview of talk:

- Review of Hoare Logic
- Mechanical proof
- Forwards versus backwards
[Slides that follow are based on joint work with Hélène Collavizza]

Hoare's Axiomatic Basis for Computer Programming

- Originally both
- an axiomatic language definition method and
- a proof theory for program verification
- This talk focuses on the verification role
- after 40 years it is still a key idea in program correctness
- However, instead of
"... accepting the axioms and rules of inference as the ultimately definitive specification of the meaning of the language."
can derive axioms and rules from language semantics

Range of methods for proving $\{P\} C\{Q\}$

- Bounded model checking (BMC)
- unwind loops a finite number of times
- then symbolically execute
- check states reached satisfy decidable properties
- Full proof of correctness
- add invariants to loops
- generate verification conditions
- prove verification conditions with a theorem prover
- Goal: unifying framework for a spectrum of methods

Some history: concepts related to $\{P\} C\{Q\}$

- WP C Q is Dijkstra's 'weakest liberal precondition'
(i.e. partial correctness: wlp.c. \& from Dijkstra \& Scholten)
- precondition WP C Q ensures Q holds after C terminates
- wlp.C. Q is weakest solution of $P:(\{P\} C\{Q\})$
(Predicate Calculus \& Program Semantics, Dijkstra \& Scholten, 1990)
- SP C P is 'strongest postcondition'
(sp.C.Q in Dijkstra \& Scholten, Ch. 12 - not stp.C.Q)
- SP C P holds after C terminates if started when P holds
- sp.C.P is strongest solution of $Q:(\{P\} C\{Q\})$

Defining specification notions by semantic embedding

- Semantics of commands C given by binary relation $\llbracket C \rrbracket$
- $\llbracket C \rrbracket\left(s, s^{\prime}\right)$ means if C run in s then it will terminate in s^{\prime}
- s is the initial state; s^{\prime} is a final state
- commands assumed deterministic - at most one final state ("Formalizing Dijkstra" by J. Harrison for non-determinism)
- $\{P\} C\{Q\}={ }_{\operatorname{def}} \forall s s^{\prime} . P s \wedge \llbracket C \rrbracket\left(s, s^{\prime}\right) \Rightarrow Q s^{\prime}$
- WP C Q $={ }_{\operatorname{def}} \lambda s . \forall s^{\prime} . \llbracket C \rrbracket\left(s, s^{\prime}\right) \Rightarrow Q s^{\prime}$
$-\vdash\{P\} C\{Q\}=\forall s . P s \Rightarrow W P C Q s$
- $S P C P=\operatorname{def} \lambda s^{\prime} . \exists s . P s \wedge \llbracket C \rrbracket\left(s, s^{\prime}\right)$
$-\vdash\{P\} C\{Q\}=\forall s . S P C P s \Rightarrow Q s$

Details and notations

－$\{P\} C\{Q\}=\operatorname{def} \forall s s^{\prime} . P s \wedge \llbracket C \rrbracket\left(s, s^{\prime}\right) \Rightarrow Q s^{\prime}$
－P，Q ：state \rightarrow bool
－state $=$ string \mapsto value（finite map）
－$s[x \rightarrow v]$ is the state mapping x to v and like s elsewhere
－$\left[x_{1} \rightarrow v_{1} ; \cdots ; x_{n} \rightarrow v_{n}\right]$ has domain $\left\{x_{1}, \cdots, x_{n}\right\}$ ；maps x_{i} to v_{i}

- 【C】 ：state \times state \rightarrow bool
- 【B】 ：state \rightarrow bool
- 【E』 ：state \rightarrow value
－WP C ：$($ state \rightarrow bool $) \rightarrow($ state \rightarrow bool $)$
－SP C ：$($ state \rightarrow bool $) \rightarrow($ state \rightarrow bool $)$
－Overload $\wedge, \vee, \Rightarrow$ ，\neg to pointwise operations on predicates
－$\left(P_{1} \wedge P_{2}\right) s=P_{1} s \wedge P_{2} s$
－$\left(P_{1} \vee P_{2}\right) s=P_{1} s \vee P_{2} s$
－$\left(P_{1} \Rightarrow P_{2}\right) s=P_{1} s \Rightarrow P_{2} s$
－$(\neg P) s=\neg(P s)$
－Define： $\operatorname{TAUT}(P)=d_{\text {def }} \forall s . P s$ and $\operatorname{sAT}(P)=d_{d e f} \exists s . P s$

Proving $\{P\} C\{Q\}$ by calculating WP $C Q$

- Easy consequences of definition of WP
- WP (SKIP) $Q=Q$
- WP $(X:=E) Q=\lambda s . Q(s[X \rightarrow \llbracket E \rrbracket s])$
- WP $\left(C_{1} ; C_{2}\right) Q=W P C_{1}\left(W P C_{2} Q\right)$
- WP (IF B THEN C_{1} ELSE $\left.C_{2}\right) Q=$

$$
\left(\llbracket B \rrbracket \Rightarrow W P C_{1} Q\right) \wedge\left(\neg \llbracket B \rrbracket \Rightarrow W P C_{2} Q\right)
$$

- WP (WHILE B DO C) $Q=$

$$
(\llbracket B \rrbracket \Rightarrow W P C(W P(\text { WHILE } B D O C) Q)) \wedge(\neg \llbracket B \rrbracket \Rightarrow Q)
$$

- To prove $\{P\} C\{Q\}$ for straight line code
- calculate WPC Q $\ldots \ldots$. ... back substitution + case splits
- prove $\forall s . P s \Rightarrow W P C Q s \ldots . . .$. use a theorem prover

Proving $\{P\} C\{Q\}$ by calculating $S P C P$

- Easy consequences of definition of $S P$
- SPSKIP $P=P$
- $S P(X:=E) P=\lambda s^{\prime} . \exists s . P s \wedge\left(s^{\prime}=s[X \rightarrow \llbracket E \rrbracket s]\right)$
- $S P\left(C_{1} ; C_{2}\right) P=S P C_{2}\left(S P P C_{1}\right)$
- $S P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right) P=$ $S P C_{1}(P \wedge \llbracket B \rrbracket) \vee S P C_{2}(P \wedge \neg \llbracket B \rrbracket)$
- $S P($ WHILE B DO C) $P=$ $S P($ WHILE B DO $C)(S P(P \wedge \llbracket B \rrbracket) C) \vee(P \wedge \neg \llbracket B \rrbracket)$
- To prove $\{P\} C\{Q\}$ for straight line code
- calculate SP P C assignment generated \exists s a problem
- prove $\forall s^{\prime}$. SP C $P s^{\prime} \Rightarrow Q s^{\prime} \ldots \ldots$..... use a theorem prover

Pruning conditional branches when going forwards

- Recall

$$
\begin{aligned}
& S P\left(\text { IF } B \text { THEN } C_{1} \text { ELSE } C_{2}\right) P= \\
& S P C_{1}(P \wedge \llbracket B \rrbracket) \vee S P C_{2}(P \wedge \neg \llbracket B \rrbracket)
\end{aligned}
$$

- Because SPC($\lambda s . F)=\lambda s^{\prime}$. F it follows that

$$
\begin{aligned}
& (P \Rightarrow \llbracket B \rrbracket) \\
& \Rightarrow \vec{S} P\left(\text { IF } B \text { THEN } C_{1} \text { ELSE } C_{2}\right) P=S P C_{1}(P \wedge \llbracket B \rrbracket) \\
& (P \Rightarrow \neg \llbracket B \rrbracket) \\
& \Rightarrow \vec{S} P\left(\text { IF } B \text { THEN } C_{1} \text { ELSE } C_{2}\right) P=S P C_{2}(P \wedge \neg \llbracket B \rrbracket)
\end{aligned}
$$

- Hence can simplify if accumulated constraints implies test

Pruning conditional branches when going backwards

- Recall

$$
\begin{aligned}
& W P\left(\text { IF } B \text { THEN } C_{1} \text { ELSE } C_{2}\right) Q= \\
& \left(\llbracket B \rrbracket \Rightarrow W P C_{1} Q\right) \wedge\left(\neg \llbracket B \rrbracket \Rightarrow W P C_{2} Q\right)
\end{aligned}
$$

- Hence

$$
\begin{aligned}
& \left(\llbracket B \rrbracket \Rightarrow W P C_{1} Q\right) \\
& \vec{W} P\left(\operatorname{IF} B \text { THEN } C_{1} \text { ELSE } C_{2}\right) Q=\left(\neg \llbracket B \rrbracket \Rightarrow W P C_{2} Q\right) \\
& \left(\neg \llbracket B \rrbracket \Rightarrow W P C_{2} Q\right) \\
& \stackrel{\rightharpoonup}{W} P\left(\text { IF } B \text { THEN } C_{1} \operatorname{ELSE} C_{2}\right) Q=\left(\llbracket B \rrbracket \Rightarrow W P C_{1} Q\right)
\end{aligned}
$$

- Backwards pruning conditions involve C_{1} or C_{2}
- forwards pruning natural - generalised execution
- forwards pruning conditions don't involve C_{1} or C_{2}

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1} ;\left(\right.$ IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{J \leq I\} \\
& K:=0 ; \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=I-J\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{J \leq I\} \\
& K:=0 ; \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=I-J\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{J \leq I\} \\
& K:=0 ; \quad\{J \leq I \wedge K=0\} \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=I-J\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{J \leq I\} \\
& K:=0 ; \quad\{J \leq I \wedge K=0\} \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \quad\{J \leq I \wedge K=0\} \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=I-J\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{J \leq I\} \\
& K:=0 ; \quad\{J \leq I \wedge K=0\} \\
& I F I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \quad\{J \leq I \wedge K=0\} \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=I-J\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{I<J\} \\
& K:=0 ; \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=J-I\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{I<J\} \\
& K:=0 ; \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=J-I\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{I<J\} \\
& K:=0 ; \quad\{I<J \wedge K=0\} \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=J-I\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{I<J\} \\
& K:=0 ; \quad\{I<J \wedge K=0\} \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \quad\{I<J \wedge K=1\} \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=J-I\}
\end{aligned}
$$

Backwards or forwards?

- Calculating WP C Q is easy but leads to big formulae
- can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SPC P generates \exists at assignments
- at branches symbolic state can reject infeasible paths
- Consider $\{P\} C_{1}$; (IF B THEN C_{2} ELSE $\left.C_{3}\right) ; C_{4}\{Q\}$
- going forwards P and effect of C_{1} might determine B
- if P specifies a unique state, computing $S P$ is execution
- Example

$$
\begin{aligned}
& \{I<J\} \\
& K:=0 ; \quad\{I<J \wedge K=0\} \\
& \text { IF } I<J \text { THEN } K:=K+1 \text { ELSE SKIP; } \quad\{I<J \wedge K=1\} \\
& \text { IF } K=1 \wedge \neg(I=J) \text { THEN } R:=J-I \text { ELSE } R:=I-J \\
& \{R=J-I\}
\end{aligned}
$$

Summary so far

- Define $\{P\} C\{Q\}, W P C Q$ and $S P C P$ from semantics
- Prove rules for calculating WP C Q and SP C P
- one-off proofs
- For particular P, C, Q, to prove $\{P\} C\{Q\}$:
- calculate WP C Q by backwards substitution
- prove $\forall s . P s \Rightarrow W P C Q s$ using theorem prover
or
- calculate $S P C P$ by symbolic execution
- prove $\forall s^{\prime}$. SP C $P s^{\prime} \Rightarrow Q s^{\prime}$ using theorem prover
- Next: what about loops?

Can't compute finite WP or SP for loops

- Loop-free: can calculate finite formulae for WP and SP
- Loops: no simple finite formula for WP or $S P$ in general
- WP (WHILE BDO C) $Q=$
$(\llbracket B \rrbracket \wedge$ WP $C(W P(W H I L E B D O C) Q)) \vee(\neg \llbracket B \rrbracket \wedge Q)$
- SP(WHILE B DO C) $P=$ $(S P($ WHILE $B D O C)(S P C(P \wedge \llbracket B \rrbracket))) \vee(P \wedge \neg \llbracket B \rrbracket)$
- Solution inspired by Hoare logic rule (R is an invariant)

$$
\frac{\vdash P \Rightarrow R \quad \vdash\{R \wedge B\} C\{R\} \quad \vdash R \wedge \neg B \Rightarrow Q}{\qquad\{P\} \text { WHILE } B \text { DO } C\{Q\}}
$$

- Use approximate WP or $S P$ plus verification conditions

Method of verification conditions (VCs)

- Define AWP and ASP ("A" for "approximate")
- like WP, SP for skip, assignment, sequencing, conditional
- for while-loops assume invariant R magically supplied
$A W P($ WHILE B DO $\{R\} C) Q=R$
$A S P($ WHILE B DO $\{R\} C) P=R \wedge \neg \llbracket B \rrbracket$
- Define WVC C Q and SVC C P to generate VCs (details later)
- Prove $\{P\} C\{Q\}$ using theorems

$$
\begin{aligned}
& W V C C Q \Rightarrow\{A W P C Q\} C\{Q\} \\
& S V C C P \Rightarrow\{P\} C\{A S P C P\}
\end{aligned}
$$

- If C is loop-free (i.e. straight line code) then this becomes

$$
\begin{aligned}
& \mathrm{T} \Rightarrow\{W P C Q\} C\{Q\} \\
& \mathrm{T} \Rightarrow\{P\} C\{S P C P\}
\end{aligned}
$$

A problem

- Have SP C $(\lambda s . F)=\left(\lambda s^{\prime} . F\right)$ so can reduce $S P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right) P$
to
$S P C_{1}(P \wedge \llbracket B \rrbracket)$ or $S P C_{2}(P \wedge \neg \llbracket B \rrbracket)$ if P determines value of $\llbracket B \rrbracket$
- But ASP C $(\lambda s . F)$ is not necessarily ($\lambda s^{\prime} . \mathrm{F}$) $A S P$ (WHILE B DO $\{R\} C) P=R \wedge \neg \llbracket B \rrbracket$ so cannot reduce $A S P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right) P$
- A solution is to define

ASP (WHILE B DO \{R\} C) $P=$ $\lambda s^{\prime} . \operatorname{SAT}(P) \wedge R s^{\prime} \wedge \neg\left(\llbracket B \rrbracket s^{\prime}\right)$

- Can then show $A S P C(\lambda s . F)=\left(\lambda s^{\prime} . F\right)$

A problem

- Have SP C $(\lambda s . F)=\left(\lambda s^{\prime} . F\right)$ so can reduce $S P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right) P$
to
$S P C_{1}(P \wedge \llbracket B \rrbracket)$ or $S P C_{2}(P \wedge \neg \llbracket B \rrbracket)$ if P determines value of $\llbracket B \rrbracket$
- But ASP C $(\lambda s . F)$ is not necessarily $\left(\lambda s^{\prime} . F\right)$
$A S P(W H I L E B D O\{R\} C) P=R \wedge \neg \llbracket B \rrbracket$
so cannot reduce $A S P$ (IF B THEN C_{1} ELSE C_{2}) P
- A solution is to define

ASP (WHILE B DO \{R\} C) $P=$ $\lambda s^{\prime} . \operatorname{SAT}(P) \wedge R s^{\prime} \wedge \neg\left(\llbracket B \rrbracket s^{\prime}\right)$

- Can then show ASP C $(\lambda s . F)=\left(\lambda s^{\prime} . F\right)$
- A dual argument suggests defining
$A W P($ WHILE B DO $\{R\} C) Q=\lambda s . \operatorname{SAT}(\neg Q) \Rightarrow R s$ (note: $\operatorname{SAT}(\neg Q)=\neg(\operatorname{TAUT}(Q)))$

Summary: definitions of $A S P$ and $A W P$

ASPSKIP $P=P$
$\operatorname{ASP}(X:=E) P=\lambda s^{\prime} . \exists s . P s \wedge\left(s^{\prime}=s[X \rightarrow \llbracket E \rrbracket s]\right)$
$A S P\left(C_{1} ; C_{2}\right) P=A S P C_{2}\left(A S P C_{1} P\right)$
$A S P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right) P=$
$S P C_{1}(P \wedge \llbracket B \rrbracket) \vee S P C_{2}(P \wedge \neg \llbracket B \rrbracket)$
$A S P($ WHILE B DO $\{R\} C) P=\lambda s^{\prime} . \operatorname{SAT}(P) \wedge R s^{\prime} \wedge \neg\left(\llbracket B \rrbracket s^{\prime}\right)$
$A W P \operatorname{skIP} Q=Q$
$\operatorname{AWP}(X:=E) Q=\lambda s . Q(s[X \rightarrow \llbracket E \rrbracket s])$
$\operatorname{AWP}\left(C_{1} ; C_{2}\right) Q=A W P C_{1}\left(A W P C_{2} Q\right)$
$A W P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right) Q=$

$$
\left(\llbracket B \rrbracket \Rightarrow W P C_{1} Q\right) \wedge\left(\neg \llbracket B \rrbracket \Rightarrow W P C_{2} Q\right)
$$

$A W P(W H I L E B D O\{R\} C) Q=\lambda s \operatorname{SAT}(\neg Q) \Rightarrow R s$

Calculating verification conditions
 - SVC P C is a 'forwards' calculation

Calculating verification conditions

- SVC P C is a 'forwards' calculation

$$
\begin{aligned}
& \operatorname{SVC} \operatorname{SKIP} P=\mathrm{T} \\
& \operatorname{SVC}(X:=E) P=\mathrm{T} \\
& \operatorname{SVC}\left(C_{1} ; C_{2}\right) P=\operatorname{SVC} C_{1} P \wedge \operatorname{SVC} C_{2}\left(A S P C_{1} P\right) \\
& \operatorname{SVC}\left(I F B \operatorname{THEN} C_{1} \operatorname{ELSE} C_{2}\right) P= \\
& \operatorname{SAT}(P \wedge \llbracket B \rrbracket) \Rightarrow \operatorname{SVC} C_{1}(P \wedge \llbracket B \rrbracket) \wedge \\
& \operatorname{SAT}(P \wedge \neg \square \rrbracket) \Rightarrow \operatorname{SVC} C_{2}(P \wedge \neg \llbracket B \rrbracket) \\
& \operatorname{SVC}(W H I L E B D O\{R\} C) P= \\
& \operatorname{TAUT}(P \Rightarrow R) \wedge \operatorname{TAUT}(A S P C(R \wedge \llbracket B \rrbracket) \Rightarrow R) \wedge \operatorname{SVCC}(R \wedge \llbracket B \rrbracket)
\end{aligned}
$$

Calculating verification conditions

- SVC P C is a 'forwards' calculation

$$
\begin{aligned}
& \operatorname{SVC} \operatorname{SKIP} P=\mathrm{T} \\
& \operatorname{SVC}(X:=E) P=\mathrm{T} \\
& \operatorname{SVC}\left(C_{1} ; C_{2}\right) P=\operatorname{SVC} C_{1} P \wedge \operatorname{SVC} C_{2}\left(A S P C_{1} P\right) \\
& \operatorname{SVC}\left(\text { IF } B \operatorname{THEN} C_{1} \operatorname{ELSE} C_{2}\right) P= \\
& \operatorname{SAT}(P \wedge \llbracket \|) \Rightarrow \operatorname{SVC} C_{1}(P \wedge \llbracket B \|) \wedge \\
& \operatorname{SAT}(P \wedge \llbracket B \|) \Rightarrow \operatorname{SVC} C_{2}(P \wedge \neg[B \rrbracket) \\
& \operatorname{SVC}(\operatorname{WHILE} B \operatorname{DO}\{R\} C) P= \\
& \operatorname{TAUT}(P \Rightarrow R) \wedge \operatorname{TAUT}(A S P C(R \wedge \llbracket B \rrbracket) \Rightarrow R) \wedge \operatorname{SVC} C(R \wedge \llbracket B \rrbracket)
\end{aligned}
$$

- WVC C Q is a standard 'backwards' calculation

Calculating verification conditions

- SVC P C is a 'forwards' calculation

```
SVCSKIP P = T
SVC(X := E)P = T
SVC (C\mp@subsup{C}{1}{};\mp@subsup{C}{2}{})P=SVC C P P S SVC C C (ASP C C P)
SVC(IF B THEN C C ELSE C C ) P=
    SAT(P\wedge\llbracketB\rrbracket) = SVC C ( }(P\wedge\llbracketB\rrbracket
    SAT (P\wedge\neg\llbracketB\rrbracket) => SVC C2 (P\wedge\neg\llbracketB\rrbracket)
SVC(WHILE B DO {R} C) P =
    TAUT (P=>R)^ TAUT (ASP C (R\wedge\llbracketB\rrbracket) =>R) ^ SVC C (R^\llbracketB\rrbracket)
```

- WVC C Q is a standard 'backwards' calculation

```
WVC (SKIP) Q = T
WVC}(X:=E)Q=
WVC}(\mp@subsup{C}{1}{};\mp@subsup{C}{2}{})Q=WVC\mp@subsup{C}{1}{}(AWP C C Q)^WVC C C Q
WVC(IF B THEN C CLSE C C ) Q =
    TAUT(Q) \vee (WVC C C Q \ WVC C C Q )
WVC(WHILE B DO {R} C) Q =
TAUT (R\wedge\llbracketB\rrbracket=> AWP C R) ^ TAUT (R\wedge \neg\llbracketB\rrbracket=> Q) ^ WVC C R
```


Symbolic execution of loops

```
ASP(WHILE B DO {R} C) P=\lambdas'.SAT (P)^R s'^\neg(\llbracketB\rrbracket s')
```

- New state satisfying invariant R and loop-exit condition
- Pre and post loop states linked by verification conditions

```
SVC(WHILE B DO {R} C) P=
    TAUT (P=>R)}\wedge TAUT (ASP C (R\wedge\llbracketB\rrbracket)=>R) ^ SVC C (R\wedge\llbracketB\rrbracket)
```

- Various approaches to symbolic execution:
- generate fresh set of state variables (need some metatheoretic proof of correctness)
- manage variable scopes inside logic using \exists (correct-by-construct, but inefficient)

Symbolic execution of loops

```
ASP(WHILE B DO {R} C) P=\lambdas'.SAT (P)^R s'^\neg(\llbracketB\rrbracket s')
```

- New state satisfying invariant R and loop-exit condition
- Pre and post loop states linked by verification conditions

```
SVC(WHILE B DO {R} C) P=
    TAUT (P=>R)}\wedge TAUT (ASP C (R\wedge\llbracketB\rrbracket)=>R)^SVC C (R\wedge\llbracketB\rrbracket)
```

- Various approaches to symbolic execution:
- generate fresh set of state variables (need some metatheoretic proof of correctness)
- manage variable scopes inside logic using \exists (correct-by-construct, but inefficient)
- Question (Plotkin)
- is there a semantics characterisation of AWP and ASP ?

Shallow embedding of symbolic execution in logic

$-\vdash S P(X:=E) P=\lambda s^{\prime} . \exists s . P s \wedge\left(s^{\prime}=s[X \rightarrow \llbracket E \rrbracket s]\right)$

- Consider P of form
$\lambda s . \exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}])$
where
- X_{1}, \ldots, X_{n} are distinct program variables (string constants)
- x_{1}, \ldots, x_{n} are logic variables (i.e. symbolic values)
- S, e_{1}, \ldots, e_{n} only contain variables x_{1}, \ldots, x_{n} and constants
- $[\bar{X} \rightarrow \bar{e}]$ abbreviates $\left[X_{1} \rightarrow e_{1} ; \ldots ; X_{n} \rightarrow e_{n}\right]$
- It follows that

$$
\begin{aligned}
& \vdash S P\left(X_{i}:=E_{i}\right)\left(\lambda s . \exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}])\right) \\
& \quad=\lambda s . \exists x_{1} \cdots x_{n} . S \wedge\left(s=[\bar{X} \rightarrow \bar{e}]\left[X_{i} \rightarrow\left(\llbracket E_{i} \rrbracket[\bar{X} \rightarrow \bar{e}]\right)\right]\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \quad[\bar{X} \rightarrow \bar{e}]\left[X_{i} \rightarrow\left(\llbracket E_{i} \rrbracket[\bar{X} \rightarrow \bar{e}]\right)\right] \\
& \quad=\left[X_{1} \rightarrow e_{1}, \ldots, X_{i} \rightarrow\left(\llbracket E_{i} \rrbracket[\bar{X} \rightarrow \bar{e}]\right), \ldots, X_{n} \rightarrow e_{n}\right]
\end{aligned}
$$

Symbolic state notation for predicates

- Abbreviate
$\lambda s . \exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}])$
as
$\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$
then it follows that

$$
\begin{aligned}
& S P\left(X_{i}:=E_{i}\right)\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle \\
& =\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{i}=\llbracket E_{i} \rrbracket[\bar{X} \rightarrow \bar{e}] \wedge \ldots \wedge X_{n}=e_{n}\right\rangle
\end{aligned}
$$

- Computing $S P$ is now symbolic execution
- symbolic state term: $\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$
- no new existential quantifiers generated by assignments!
- SPSKIP $P=P$
- $S P\left(C_{1} ; C_{2}\right) P=S P C_{2}\left(S P C_{1} P\right)$

Symbolic state notation for predicates

- Abbreviate
$\lambda s . \exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}])$
as
$\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$
then it follows that

$$
\begin{aligned}
& S P\left(X_{i}:=E_{i}\right)\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle \\
& =\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{i}=\llbracket E_{i} \rrbracket[\bar{X} \rightarrow \bar{e}] \wedge \ldots \wedge X_{n}=e_{n}\right\rangle
\end{aligned}
$$

- Computing $S P$ is now symbolic execution
- symbolic state term: $\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$
- no new existential quantifiers generated by assignments!
- SPSKIP $P=P$
- $S P\left(C_{1} ; C_{2}\right) P=S P C_{2}\left(S P C_{1} P\right)$
- Simpler symbolic state represention OK for loop-free code

Symbolic execution of conditional branches

- Recall

```
SP(IF B THEN C ELSE C C ) P
    =SP C ( }P\wedge|B\rrbracket)\veeSP\mp@subsup{C}{2}{}(P\wedge\neg\llbracketB\rrbracket
```

- Now

$$
\begin{aligned}
& \left\langle\exists \bar{X} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle \wedge \llbracket B \rrbracket \\
& =\left(\lambda s . \exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}])\right) \wedge \llbracket B \rrbracket \\
& =\lambda s .\left(\exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}])\right) \wedge \llbracket B \rrbracket s \\
& =\lambda s . \exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}]) \wedge \llbracket B \rrbracket s \\
& =\lambda s .\left(\exists x_{1} \cdots x_{n} . S \wedge(s=[\bar{X} \rightarrow \bar{e}]) \wedge \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]\right. \\
& =\lambda s . \exists x_{1} \cdots x_{n} .(S \wedge \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]) \wedge(s=[\bar{X} \rightarrow \bar{e}]) \\
& =\left\langle\exists \bar{x} \cdot(S \wedge \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]) \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle
\end{aligned}
$$

- Hence
$S P\left(\right.$ IF B THEN C_{1} ELSE $\left.C_{2}\right)\left\langle\exists \bar{x} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$
$=S P C_{1}\left\langle\exists \bar{X} .(S \wedge \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]) \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$ $S P C_{2}\left\langle\exists \bar{X} .(S \wedge \neg \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]) \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle$
- Prune paths by checking $S \wedge \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]$ and $S \wedge \neg \llbracket B \rrbracket[\bar{X} \rightarrow \bar{e}]$

Approximate symbolic execution of while-loops

- Symbolically execute straight line code as before
- For while-loops, recall from previous slide

$$
A S P(\text { WHILE } B \mathrm{DO}\{R\} C) P=\lambda s^{\prime} . \mathrm{SAT}(P) \wedge R s^{\prime} \wedge \neg\left(\llbracket B \rrbracket s^{\prime}\right)
$$

- Hence execute while-loops as follows

$$
\begin{aligned}
& A S P(\text { WHILE } B \text { DO }\{R\} C)\left\langle\exists \bar{X} . S \wedge X_{1}=e_{1} \wedge \ldots \wedge X_{n}=e_{n}\right\rangle \\
& =\langle\exists \bar{X} .((\exists \bar{x} . S \bar{x}) \wedge R[\bar{X} \rightarrow \bar{X}] \wedge \neg \llbracket B \rrbracket[\bar{X} \rightarrow \bar{x}]) \\
& \wedge \\
& \left.\quad X_{1}=x_{1} \wedge \ldots \wedge X_{n}=x_{n}\right\rangle
\end{aligned}
$$

- constraint S computed up to loop is discarded
- create new state satisfying invariant and loop exit condition
- link between pre and post loop states provided by VCs

$$
\begin{aligned}
& \operatorname{SVC}(\text { WHILE } B \operatorname{DO}\{R\} C) P= \\
& \operatorname{TAUT}(P \Rightarrow R) \wedge \operatorname{TAUT}(A S P C(R \wedge \llbracket B \rrbracket) \Rightarrow R) \wedge S V C C(R \wedge \llbracket B \rrbracket)
\end{aligned}
$$

Two cultures have evolved from Floyd-Hoare ideas

- Bounded model checking (BMC)
- unwind loops a finite number of times
- then symbolically execute forwards
- essentially $S P \subset P \Rightarrow Q$
- automatically check states reached satisfy properties
- Full proof of correctness
- generate verification conditions
- usually backwards by computing weakest preconditions
- essentially $P \Rightarrow$ WP C Q
- interactively prove resulting subgoal formulae
- Computing postconditions unifies BMC and full verification
- symbolic execution is ASP calculation
- add forward VCs for verification of loops

Other application of Floyd-Hoare ideas

Two cultures have evolved from Floyd-Hoare ideas

- Bounded model checking (BMC)
- unwind loops a finite number of times
- then symbolically execute forwards
- essentially $S P C P \Rightarrow Q$
- automatically check states reached satisfy properties
- Full proof of correctness
- generate verification conditions
- usually backwards by computing weakest preconditions
- essentially $P \Rightarrow$ WP C Q
- interactively prove resulting subgoal formulae
- Computing postconditions unifies BMC and full verification
- symbolic execution is ASP calculation
- add forward VCs for verification of loops
- Other application of Floyd-Hoare ideas
- refinement:
synthesize code to achive a postcondition (WP)
- reverse engineering: execute symbolically to find out what code does (SP)

Overview of implementation

- Everything is programmed deduction in a theorem prover
- semantic embedding plus custom theorem proving tools
- for efficiency external oracles used to prune paths
- oracle provenance tracking via theorem tags
- HOL4 used for implementation of theorem proving
- provides higher order logic for representing semantics
- LCF-style proof tools (deriving Hoare logic, solving VCs)
- ML for proof scripting and general programming
- YICES used as oracle (future: Z3)
- SMT solver from SRI International
- used to quickly check conditional branch feasibility
- 'blow away' easy VCs (hard ones by HOL4 interactive proof)
- Experiments needed to compare forwards vs backwards!

THE END

Slides at:

THE END

Slides at: http://www.cl.cam.ac.uk/~mjcg/Hoare75/

