Forward with Hoare!

2009: Tony Hoare is 75 and Hoare Logic is 40!

An Axiomatic Basis for Computer Programming C. A. R. Hoare, 1969

Overview of talk:

- Review of Hoare Logic
- Mechanical proof
- Forwards versus backwards

[Slides that follow are based on joint work with Hélène Collavizza]

Hoare's Axiomatic Basis for Computer Programming

- Originally both
 - an axiomatic language definition method and
 - a proof theory for program verification
- This talk focuses on the verification role
 - after 40 years it is still a key idea in program correctness
- However, instead of

"... accepting the axioms and rules of inference as the ultimately definitive specification of the meaning of the language."

can derive axioms and rules from language semantics

Range of methods for proving $\{P\}C\{Q\}$

- Bounded model checking (BMC)
 - unwind loops a finite number of times
 - then symbolically execute
 - check states reached satisfy decidable properties
- Full proof of correctness
 - add invariants to loops
 - generate verification conditions
 - prove verification conditions with a theorem prover

Goal: unifying framework for a spectrum of methods

decidable checking

proof of correctness

Some history: concepts related to $\{P\} C \{Q\}$

WP C Q is Dijkstra's 'weakest liberal precondition'

(i.e. partial correctness: wlp.C.Q from Dijkstra & Scholten)

- precondition WP C Q ensures Q holds after C terminates
- wlp.C.Q is weakest solution of P : ({P} C {Q}) (Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)

SP C P is 'strongest postcondition'

(sp.C.Q in Dijkstra & Scholten, Ch.12 - not stp.C.Q)

- SP C P holds after C terminates if started when P holds
- sp.C.P is strongest solution of Q : ({P} C {Q})

Defining specification notions by semantic embedding

- Semantics of commands C given by binary relation [C]
 - [C](s, s') means if C run in s then it will terminate in s'
 - s is the initial state; s' is a final state
 - commands assumed deterministic at most one final state ("Formalizing Dijkstra" by J. Harrison for non-determinism)
- ► $\{P\}C\{Q\} =_{def} \forall s \ s'. \ P \ s \land \llbracket C \rrbracket(s, s') \Rightarrow Q \ s'$
- ► WP C Q =_{def} λ s. \forall s'. \llbracket C \rrbracket (s, s') \Rightarrow Q s'
- $\blacktriangleright \vdash \{P\}C\{Q\} = \forall s. P s \Rightarrow WPCQs$
- ► SP C P =_{def} $\lambda s'$. $\exists s. P s \land \llbracket C \rrbracket(s, s')$
- $\blacktriangleright \vdash \{P\}C\{Q\} = \forall s. SP C P s \Rightarrow Q s$

Details and notations

► $\{P\}C\{Q\} =_{def} \forall s \ s'. \ P \ s \land \llbracket C \rrbracket(s, s') \Rightarrow Q \ s'$

- ▶ P, Q : state → bool
- $state = string \mapsto value$ (finite map)
- $s[x \rightarrow v]$ is the state mapping x to v and like s elsewhere
- $[x_1 \rightarrow v_1; \cdots; x_n \rightarrow v_n]$ has domain $\{x_1, \cdots, x_n\}$; maps x_i to v_i
- [C] : state \times state \rightarrow bool
- $\llbracket B \rrbracket$: state \rightarrow bool
- $\llbracket E \rrbracket$: state \rightarrow value
- WP C : (state \rightarrow bool) \rightarrow (state \rightarrow bool)
- ▶ SP C : (state \rightarrow bool) \rightarrow (state \rightarrow bool)

► Overload ∧, ∨, ⇒, ¬ to pointwise operations on predicates

$$\bullet (P_1 \land P_2) \mathsf{s} = P_1 \mathsf{s} \land P_2 \mathsf{s}$$

- $(P_1 \lor P_2) \mathsf{s} = P_1 \mathsf{s} \lor P_2 \mathsf{s}$
- $(P_1 \Rightarrow P_2) s = P_1 s \Rightarrow P_2 s$
- $\blacktriangleright (\neg P) s = \neg (P s)$

▶ Define: TAUT(P) $=_{def} \forall s. P s \text{ and } SAT(P) =_{def} \exists s. P s$

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009)

Proving $\{P\}C\{Q\}$ by calculating WP C Q

- Easy consequences of definition of WP
 - WP(SKIP) Q = Q
 - WP (X := E) Q = λ s. Q(s[X \to [[E]] s])
 - $\blacktriangleright WP(C_1; C_2) Q = WPC_1(WPC_2 Q)$
 - ► WP (IF B THEN C_1 ELSE C_2) Q = ($\llbracket B \rrbracket$ \Rightarrow WP C_1 Q) \land ($\neg \llbracket B \rrbracket$ \Rightarrow WP C_2 Q)
 - ► WP (WHILE B DO C) Q = ([B] ⇒ WP C (WP (WHILE B DO C) Q)) ∧ (¬[B] ⇒ Q)
- To prove {P}C{Q} for straight line code
 - calculate WP C Q back substitution + case splits
 - ▶ prove \forall s. *P* s \Rightarrow *WP C* Q suse a theorem prover

Proving $\{P\}C\{Q\}$ by calculating SP C P

- Easy consequences of definition of SP
 - SP SKIP P = P
 - ► $SP(X := E) P = \lambda s'$. $\exists s. P s \land (s' = s[X \rightarrow \llbracket E \rrbracket s])$
 - $\blacktriangleright SP(C_1; C_2) P = SPC_2(SPPC_1)$
 - ► SP(IF B THEN C_1 ELSE C_2) P =SP C_1 ($P \land \llbracket B \rrbracket$) \lor SP C_2 ($P \land \neg \llbracket B \rrbracket$)
 - ► SP (WHILE B DO C) P = SP (WHILE B DO C) (SP ($P \land [B]$) C) $\lor (P \land \neg [B]$)
- To prove {P}C{Q} for straight line code
 - calculate SP P C assignment generated ∃s a problem
 - ▶ prove $\forall s'$. SP C P $s' \Rightarrow Q s'$ use a theorem prover

Pruning conditional branches when going forwards

Recall

 $\begin{array}{l} \mathsf{SP}\left(\texttt{IF }B\texttt{ THEN }C_1\texttt{ ELSE }C_2\right)P = \\ \mathsf{SP} \ C_1 \ (P \land \llbracket B \rrbracket) \lor \mathsf{SP} \ C_2 \ (P \land \neg \llbracket B \rrbracket) \end{array}$

• Because SP C (λ s. F) = λ s'. F it follows that

```
 \begin{array}{l} (P \Rightarrow \llbracket B \rrbracket) \\ \Rightarrow \\ SP (IF B THEN C_1 ELSE C_2) P = SP C_1 (P \land \llbracket B \rrbracket) \\ (P \Rightarrow \neg \llbracket B \rrbracket) \\ \Rightarrow \\ SP (IF B THEN C_1 ELSE C_2) P = SP C_2 (P \land \neg \llbracket B \rrbracket) \end{array}
```

Hence can simplify if accumulated constraints implies test

Pruning conditional branches when going backwards

► Recall $WP(IF B THEN C_1 ELSE C_2) Q = (\llbracket B \rrbracket \Rightarrow WP C_1 Q) \land (\neg \llbracket B \rrbracket \Rightarrow WP C_2 Q)$

Hence

 $(\llbracket B \rrbracket \Rightarrow WP C_1 Q)$ $\stackrel{\Rightarrow}{\Rightarrow} WP (IF B THEN C_1 ELSE C_2) Q = (\neg \llbracket B \rrbracket \Rightarrow WP C_2 Q)$ $(\neg \llbracket B \rrbracket \Rightarrow WP C_2 Q)$ $\stackrel{\Rightarrow}{\Rightarrow} WP (IF B THEN C_1 ELSE C_2) Q = (\llbracket B \rrbracket \Rightarrow WP C_1 Q)$

Backwards pruning conditions involve C₁ or C₂

- forwards pruning natural generalised execution
- forwards pruning conditions don't involve C₁ or C₂

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - ▶ if *P* specifies a unique state, computing *SP* is execution
- Example

$$\begin{aligned} \{J \leq I\} \\ K &:= 0; \\ \text{IF } I < J \text{ THEN } K &:= K + 1 \text{ ELSE SKIP}; \\ \text{IF } K &= 1 \land \neg (I = J) \text{ THEN } R &:= J - I \text{ ELSE } R &:= I - J \\ \{R = I - J\} \end{aligned}$$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - ▶ if *P* specifies a unique state, computing *SP* is execution
- Example

 $\begin{aligned} \{J \leq I\} \\ K &:= 0; \\ \text{IF } I < J \text{ THEN } K &:= K + 1 \text{ ELSE SKIP}; \\ \text{IF } K &= 1 \land \neg (I = J) \text{ THEN } R &:= J - I \text{ ELSE } R &:= I - J \\ \{R = I - J\} \end{aligned}$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - ▶ if *P* specifies a unique state, computing *SP* is execution
- Example

$$\begin{aligned} \{J \leq I\} \\ K &:= 0; \quad \{J \leq I \land K = 0\} \\ \text{IF } I < J \text{ THEN } K &:= K + 1 \text{ ELSE SKIP}; \\ \text{IF } K &= 1 \land \neg (I = J) \text{ THEN } R &:= J - I \text{ ELSE } R &:= I - J \\ \{R = I - J\} \end{aligned}$$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - if P specifies a unique state, computing SP is execution
- Example

$$\begin{aligned} \{J \leq I\} \\ K &:= 0; \quad \{J \leq I \land K = 0\} \\ \text{IF } I < J \text{ THEN } K &:= K + 1 \text{ ELSE SKIP}; \quad \{J \leq I \land K = 0\} \\ \text{IF } K &= 1 \land \neg (I = J) \text{ THEN } R &:= J - I \text{ ELSE } R &:= I - J \\ \{R = I - J\} \end{aligned}$$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - if P specifies a unique state, computing SP is execution
- Example

$$\begin{aligned} \{J \leq I\} \\ K &:= 0; \quad \{J \leq I \land K = 0\} \\ \text{IF } I < J \text{ THEN } K &:= K + 1 \text{ ELSE SKIP}; \quad \{J \leq I \land K = 0\} \\ \text{IF } K &= 1 \land \neg (I = J) \text{ THEN } R &:= J - I \text{ ELSE } R &:= I - J \\ \{R = I - J\} \end{aligned}$$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - ▶ if *P* specifies a unique state, computing *SP* is execution
- Example

$$\{I < J\} \\ K := 0; \\ IF I < J \text{ THEN } K := K + 1 \text{ ELSE SKIP}; \\ IF K = 1 \land \neg (I = J) \text{ THEN } R := J - I \text{ ELSE } R := I - J \\ \{R = J - I\}$$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - ▶ if *P* specifies a unique state, computing *SP* is execution
- Example

 $\begin{aligned} &\{I < J\} \\ &K := 0; \\ &\text{IF } I < J \text{ THEN } K := K + 1 \text{ ELSE SKIP}; \\ &\text{IF } K = 1 \land \neg (I = J) \text{ THEN } R := J - I \text{ ELSE } R := I - J \\ &\{R = J - I\} \end{aligned}$

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - ▶ if *P* specifies a unique state, computing *SP* is execution
- Example

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - if P specifies a unique state, computing SP is execution
- Example

- Calculating WP C Q is easy but leads to big formulae
 - can't use symbolic state to prune case splits 'on-the-fly'
- ► Calculating SP C P generates ∃ at assignments
 - at branches symbolic state can reject infeasible paths
- Consider $\{P\}C_1$; (IF B THEN C_2 ELSE C_3); $C_4\{Q\}$
 - going forwards P and effect of C₁ might determine B
 - if P specifies a unique state, computing SP is execution
- Example

Summary so far

- Define $\{P\}C\{Q\}$, WP C Q and SP C P from semantics
- Prove rules for calculating WP C Q and SP C P
 - one-off proofs
- For particular P, C, Q, to prove $\{P\}C\{Q\}$:
 - calculate WP C Q by backwards substitution
 - prove $\forall s. P s \Rightarrow WP C Q s$ using theorem prover

or

- calculate SP C P by symbolic execution
- ▶ prove $\forall s'$. SP C P $s' \Rightarrow Q s'$ using theorem prover
- Next: what about loops?

Can't compute finite WP or SP for loops

- Loop-free: can calculate finite formulae for WP and SP
- Loops: no simple finite formula for WP or SP in general
 - ► WP (WHILE B DO C) Q = ($[B] \land WP C (WP (WHILE B DO C) Q)$) $\lor (\neg [B] \land Q)$
 - ► SP(WHILE B DO C) P = (SP(WHILE B DO C) (SP C ($P \land [B]$))) $\lor (P \land \neg [B]$)

Solution inspired by Hoare logic rule (*R* is an invariant)

 $\begin{array}{c|c} \vdash P \Rightarrow R & \vdash \{R \land B\}C\{R\} & \vdash R \land \neg B \Rightarrow Q \\ \hline & \vdash \{P\} \\ \hline \\ \hline \\ \end{array}$

Use approximate WP or SP plus verification conditions

Method of verification conditions (VCs)

- Define AWP and ASP ("A" for "approximate")
 - ► like WP, SP for skip, assignment, sequencing, conditional
 - For while-loops assume invariant R magically supplied AWP (WHILE B DO {R} C) Q = R ASP (WHILE B DO {R} C) P = R ∧ ¬[B]
- Define WVC C Q and SVC C P to generate VCs (details later)
- Prove {P}C{Q} using theorems
 WVC C Q ⇒ {AWP C Q}C{Q}
 SVC C P ⇒ {P}C{ASP C P}
- If C is loop-free (i.e. straight line code) then this becomes
 T ⇒ {WP C Q}C{Q}
 T ⇒ {P}C{SP C P}

A problem

- ► Have SP C (\lambda s. F) = (\lambda s'. F) so can reduce SP (IF B THEN C₁ ELSE C₂) P to SP C₁ (P ∧ [[B]]) or SP C₂ (P ∧ ¬[[B]]) if P determines value of [[B]]
- ► But $ASP C (\lambda s. F)$ is not necessarily $(\lambda s'. F)$ $ASP (WHILE B DO \{R\} C) P = R \land \neg [B]$ so cannot reduce $ASP (IF B THEN C_1 ELSE C_2) P$
- A solution is to define ASP (WHILE B DO {R} C) P = λs'. SAT(P) ∧ R s' ∧ ¬([[B]] s')
- Can then show ASP C (λs . F) = ($\lambda s'$. F)

A dual argument suggests defining AWP (WHILE B DO {R} C) Q = λs. SAT(¬Q) ⇒ R s (note: SAT(¬Q) = ¬(TAUT(Q)))

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009)

A problem

- ► Have SP C (\lambda s. F) = (\lambda s'. F) so can reduce SP (IF B THEN C₁ ELSE C₂) P to SP C₁ (P ∧ [B]) or SP C₂ (P ∧ ¬[B]) if P determines value of [B]
- ► But $ASP C (\lambda s. F)$ is not necessarily $(\lambda s'. F)$ $ASP (WHILE B DO \{R\} C) P = R \land \neg [B]$ so cannot reduce $ASP (IF B THEN C_1 ELSE C_2) P$
- A solution is to define ASP (WHILE B DO {R} C) P = λs'. SAT(P) ∧ R s' ∧ ¬([[B]] s')
- Can then show ASP C (λs . F) = ($\lambda s'$. F)
- ► A dual argument suggests defining AWP (WHILE B DO {R} C) $Q = \lambda s$. SAT($\neg Q$) $\Rightarrow R s$ (note: SAT($\neg Q$) = \neg (TAUT(Q)))

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009)

Summary: definitions of ASP and AWP

 $\begin{aligned} &ASP \text{ SKIP } P = P \\ &ASP (X := E) P = \lambda s' . \exists s. P \ s \land (s' = s[X \rightarrow \llbracket E \rrbracket s]) \\ &ASP (C_1 : C_2) P = ASP \ C_2 (ASP \ C_1 \ P) \\ &ASP (IF \ B \ THEN \ C_1 \ ELSE \ C_2) P = \\ &SP \ C_1 (P \land \llbracket B \rrbracket) \lor SP \ C_2 (P \land \neg \llbracket B \rrbracket) \\ &ASP (WHILE \ B \ DO \ \{R\} \ C) P = \lambda s' . \ SAT(P) \land R \ s' \land \neg (\llbracket B \rrbracket s') \end{aligned}$

 $\begin{array}{l} AWP \ \text{SKIP} \ Q \ = \ Q \\ AWP \ (X \ \coloneqq E) \ Q \ = \ \lambda s. \ Q(s[X \rightarrow \llbracket E \rrbracket \, s]) \\ AWP \ (C_1 \ ; \ C_2) \ Q \ = \ AWP \ C_1 \ (AWP \ C_2 \ Q) \\ AWP \ (IF \ B \ \text{THEN} \ C_1 \ ELSE \ C_2) \ Q \ = \\ (\llbracket B \rrbracket \ \Rightarrow \ WP \ C_1 \ Q) \ \land \ (\neg \llbracket B \rrbracket \ \Rightarrow \ WP \ C_2 \ Q) \\ AWP \ (WHILE \ B \ DO \ \{R\} \ C) \ Q \ = \ \lambda s. \ SAT(\neg Q) \ \Rightarrow \ R \ s \end{array}$

SVC P C is a 'forwards' calculation

 $\begin{aligned} & \text{SVC SKIP } P = \mathsf{T} \\ & \text{SVC } (X := E) P = \mathsf{T} \\ & \text{SVC } (C_1 : C_2) P = \text{SVC } C_1 P \land \text{SVC } C_2 (ASP C_1 P) \\ & \text{SVC } (\text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2) P = \\ & \text{SAT}(P \land \llbracket B \rrbracket) \Rightarrow \text{SVC } C_1 (P \land \llbracket B \rrbracket) \land \\ & \text{SAT}(P \land \neg \llbracket B \rrbracket) \Rightarrow \text{SVC } C_2 (P \land \neg \llbracket B \rrbracket) \\ & \text{SVC } (\text{WHILE } B \text{ DO } \{R\} C) P = \\ & \text{TAUT}(P \Rightarrow R) \land \text{TAUT}(ASP C (R \land \llbracket B \rrbracket) \Rightarrow R) \land \text{SVC } C (R \land \llbracket B \rrbracket) \end{aligned}$

WVC C Q is a standard 'backwards' calculation

 WVC C Q is a standard 'backwards' calculation

 WVC (SIGLE)

 WVC (WICLE)

SVC P C is a 'forwards' calculation

 $\begin{array}{l} \mathsf{SVC}\ \mathsf{SKIP}\ \mathsf{P}\ =\ \mathsf{T}\\ \mathsf{SVC}\ (X\ \coloneqq\ \mathsf{E}\ \mathsf{P}\ =\ \mathsf{T}\\ \mathsf{SVC}\ (C_1\ ;C_2)\ \mathsf{P}\ =\ \mathsf{SVC}\ C_1\ \mathsf{P}\land\mathsf{SVC}\ C_2\ (\mathsf{ASP}\ C_1\ \mathsf{P})\\ \mathsf{SVC}\ (\mathsf{IF}\ \mathsf{B}\ \mathsf{THEN}\ C_1\ \mathsf{ELSE}\ C_2)\ \mathsf{P}\ =\\ \mathsf{SAT}(\mathsf{P}\land \llbracket B \rrbracket)\ \Rightarrow\ \mathsf{SVC}\ C_1\ (\mathsf{P}\land \llbracket B \rrbracket)\ \land\\ \mathsf{SAT}(\mathsf{P}\land \lnot \llbracket B \rrbracket)\ \Rightarrow\ \mathsf{SVC}\ C_2\ (\mathsf{P}\land \lnot \llbracket B \rrbracket)\ \land\\ \mathsf{SVC}\ (\mathsf{WHILE}\ \mathsf{B}\ \mathsf{DO}\ \{\mathsf{R}\}\ \mathsf{C})\ \mathsf{P}\ =\\ \mathsf{TAUT}(\mathsf{P}\ \Rightarrow\ \mathsf{R})\ \land\ \mathsf{TAUT}(\mathsf{ASP}\ \mathsf{C}\ (\mathsf{R}\land \llbracket B \rrbracket)\Rightarrow\mathsf{R})\ \land\ \mathsf{SVC}\ \mathsf{C}\ (\mathsf{R}\land \llbracket B \rrbracket) \end{array}$

WVC C Q is a standard 'backwards' calculation WVC (SIGLP) O = 1 WVC (Case E) O = 0 WVC

SVC P C is a 'forwards' calculation

SVC SKIP P = TSVC (X := E) P = TSVC (C₁ : C₂) $P = SVC C_1 P \land SVC C_2 (ASP C_1 P)$ SVC (IF B THEN C₁ ELSE C₂) P =SAT($P \land [B]) \Rightarrow SVC C_1 (P \land [B]) \land$ SAT($P \land \neg [B]) \Rightarrow SVC C_2 (P \land \neg [B])$ SVC (WHILE B DO {R} C) P =TAUT($P \Rightarrow R$) \land TAUT(ASP C ($R \land [B]) \Rightarrow R$) \land SVC C ($R \land [B]$)

WVC C Q is a standard 'backwards' calculation

WVC (SKIP) Q = T WVC (X := E) Q = T $WVC (C_1; C_2) Q = WVC C_1 (AWP C_2 Q) \land WVC C_2 Q$ $WVC (IF B THEN C_1 ELSE C_2) Q =$ $TAUT(Q) \lor (WVC C_1 Q \land WVC C_2 Q)$ $WVC (WHILE B DO \{R\} C) Q =$ $TAUT(R \land \|B\| \Rightarrow AWP C R) \land TAUT(R \land \neg \|B\| \Rightarrow Q) \land WVC C R$

SVC P C is a 'forwards' calculation

SVC SKIP P = TSVC (X := E) P = TSVC (C₁ : C₂) $P = SVC C_1 P \land SVC C_2 (ASP C_1 P)$ SVC (IF B THEN C₁ ELSE C₂) P =SAT($P \land [B]) \Rightarrow SVC C_1 (P \land [B]) \land$ SAT($P \land \neg [B]) \Rightarrow SVC C_2 (P \land \neg [B])$ SVC (WHILE B DO {R} C) P =TAUT($P \Rightarrow R$) \land TAUT(ASP C ($R \land [B]) \Rightarrow R$) \land SVC C ($R \land [B])$

▶ WVC C Q is a standard 'backwards' calculation WVC (SKIP) Q = T WVC (X := E) Q = T WVC (C₁ : C₂) Q = WVC C₁ (AWP C₂ Q) \land WVC C₂ Q WVC (IF B THEN C₁ ELSE C₂) Q = TAUT(Q) \lor (WVC C₁ Q \land WVC C₂ Q) WVC (WHILE B DO {R} C) Q = TAUT(R \land [B] \Rightarrow AWP C R) \land TAUT(R \land ¬[B] \Rightarrow Q) \land WVC C R

Symbolic execution of loops

$ASP(WHILE B DO \{R\} C) P = \lambda s'. SAT(P) \land R s' \land \neg(\llbracket B \rrbracket s')$

- New state satisfying invariant R and loop-exit condition
- Pre and post loop states linked by verification conditions SVC (WHILE B DO {R} C) P = TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [B]) ⇒ R) ∧ SVC C (R ∧ [B])
- Various approaches to symbolic execution:
 - generate fresh set of state variables (need some metatheoretic proof of correctness)
 - ► manage variable scopes inside logic using ∃ (correct-by-construct, but inefficient)

Question (Plotkin)

▶ is there a semantics characterisation of AWP and ASP?

Symbolic execution of loops

$ASP(WHILE B DO \{R\} C) P = \lambda s'. SAT(P) \land R s' \land \neg(\llbracket B \rrbracket s')$

- New state satisfying invariant R and loop-exit condition
- Pre and post loop states linked by verification conditions SVC (WHILE B DO {R} C) P = TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [B]) ⇒ R) ∧ SVC C (R ∧ [B])
- Various approaches to symbolic execution:
 - generate fresh set of state variables (need some metatheoretic proof of correctness)
 - ► manage variable scopes inside logic using ∃ (correct-by-construct, but inefficient)
- Question (Plotkin)
 - is there a semantics characterisation of AWP and ASP?

Shallow embedding of symbolic execution in logic

 $\blacktriangleright \vdash \mathsf{SP}(\mathsf{X} := \mathsf{E}) \mathsf{P} = \lambda \mathsf{s}' . \exists \mathsf{s}. \mathsf{P} \mathsf{s} \land (\mathsf{s}' = \mathsf{s}[\mathsf{X} \rightarrow \llbracket \mathsf{E} \rrbracket \mathsf{s}])$

Consider P of form

 $\lambda s. \exists x_1 \cdots x_n. S \land (s = [\overline{X} \rightarrow \overline{e}])$

where

- X_1, \ldots, X_n are distinct program variables (string constants)
- x_1, \ldots, x_n are logic variables (i.e. symbolic values)
- ▶ S, e_1, \ldots, e_n only contain variables x_1, \ldots, x_n and constants
- $[\overline{X} \rightarrow \overline{e}]$ abbreviates $[X_1 \rightarrow e_1; ...; X_n \rightarrow e_n]$
- It follows that

 $\vdash SP(X_i := E_i) (\lambda s. \exists x_1 \cdots x_n. S \land (s = [\overline{X} \to \overline{e}]))$ = $\lambda s. \exists x_1 \cdots x_n. S \land (s = [\overline{X} \to \overline{e}][X_i \to ([[E_i]][\overline{X} \to \overline{e}])])$

where

$$[\overline{X} \to \overline{\mathbf{e}}][X_i \to (\llbracket E_i \rrbracket [\overline{X} \to \overline{\mathbf{e}}])] = [X_1 \to \mathbf{e}_1, \dots, X_i \to (\llbracket E_i \rrbracket [\overline{X} \to \overline{\mathbf{e}}]), \dots, X_n \to \mathbf{e}_n]$$

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009)

Frame count: 33 / 42

Symbolic state notation for predicates

Abbreviate

$$\lambda s. \exists x_1 \cdots x_n. S \land (s = [\overline{X} \rightarrow \overline{e}])$$

as
$$\langle \exists \overline{x}. S \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle$$

then it follows that $SP(X_i := E_i) \langle \exists \overline{x}. S \land X_1 = e_1 \land \dots \land X_n = e_n \rangle$ $= \langle \exists \overline{x}. S \land X_1 = e_1 \land \dots \land X_i = \llbracket E_i \rrbracket [\overline{X} \to \overline{e}] \land \dots \land X_n = e_n \rangle$

- Computing SP is now symbolic execution
 - symbolic state term: $\langle \exists \overline{x}. S \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle$
 - no new existential quantifiers generated by assignments!
 - SP SKIP P = P
 - $\blacktriangleright SP(C_1; C_2) P = SPC_2(SPC_1 P)$

Simpler symbolic state represention OK for loop-free code

Symbolic state notation for predicates

Abbreviate

$$\lambda s. \exists x_1 \cdots x_n. S \land (s = [\overline{X} \to \overline{e}])$$

as
$$\langle \exists \overline{x}, S \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle$$

then it follows that $SP(X_i := E_i) \langle \exists \overline{x}. S \land X_1 = e_1 \land \dots \land X_n = e_n \rangle$ $= \langle \exists \overline{x}. S \land X_1 = e_1 \land \dots \land X_i = \llbracket E_i \rrbracket [\overline{X} \to \overline{e}] \land \dots \land X_n = e_n \rangle$

- Computing SP is now symbolic execution
 - ► symbolic state term: $\langle \exists \overline{x}. S \land X_1 = e_1 \land ... \land X_n = e_n \rangle$
 - no new existential quantifiers generated by assignments!
 - SP SKIP P = P
 - $\blacktriangleright SP(C_1;C_2)P = SPC_2(SPC_1P)$

Simpler symbolic state represention OK for loop-free code

Symbolic execution of conditional branches

► Recall SP(IF B THEN C_1 ELSE C_2) P = SP C_1 ($P \land [B]$) \lor SP C_2 ($P \land \neg [B]$)

Now

$$\begin{array}{l} \langle \exists \overline{x}. \ S \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle \land \llbracket B \rrbracket \\ = (\lambda s. \ \exists x_1 \cdots x_n. \ S \land (s = [\overline{X} \to \overline{e}])) \land \llbracket B \rrbracket \\ = \lambda s. (\exists x_1 \cdots x_n. \ S \land (s = [\overline{X} \to \overline{e}])) \land \llbracket B \rrbracket s \\ = \lambda s. \ \exists x_1 \cdots x_n. \ S \land (s = [\overline{X} \to \overline{e}]) \land \llbracket B \rrbracket s \\ = \lambda s. (\exists x_1 \cdots x_n. \ S \land (s = [\overline{X} \to \overline{e}]) \land \llbracket B \rrbracket [\overline{X} \to \overline{e}] \\ = \lambda s. \ \exists x_1 \cdots x_n. \ S \land (s = [\overline{X} \to \overline{e}]) \land \llbracket B \rrbracket [\overline{X} \to \overline{e}] \\ = \lambda s. \ \exists x_1 \cdots x_n. \ (S \land \llbracket B \rrbracket [\overline{X} \to \overline{e}]) \land (s = [\overline{X} \to \overline{e}]) \\ = \langle \exists \overline{x}. \ (S \land \llbracket B \rrbracket [\overline{X} \to \overline{e}]) \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle \end{array}$$

Hence

 $SP(IF B THEN C_1 ELSE C_2) \langle \exists \overline{x}. S \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle$

 $= \underset{\bigvee}{\mathsf{SP}} C_1 \langle \exists \overline{\mathbf{x}}. (S \land \llbracket B \rrbracket [\overline{X} \to \overline{\mathbf{e}}]) \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle$

 $SP C_2 \langle \exists \overline{\mathbf{x}}. (S \land \neg \llbracket B \rrbracket [\overline{X} \to \overline{\mathbf{e}}]) \land X_1 = e_1 \land \ldots \land X_n = e_n \rangle$

▶ Prune paths by checking $S \land [B] [\overline{X} \to \overline{e}]$ and $S \land \neg [B] [\overline{X} \to \overline{e}]$

Approximate symbolic execution of while-loops

- Symbolically execute straight line code as before
- For while-loops, recall from previous slide
 ASP (WHILE B DO {R} C) P = \lambda s'. SAT(P) \lambda R s' \lambda ¬([[B]] s')
- Hence execute while-loops as follows

 $\begin{array}{l} ASP (\texttt{WHILE } B \texttt{ DO } \{ R \} C) \langle \exists \overline{x}. \ S \land \ X_1 = e_1 \land \ldots \land X_n = e_n \rangle \\ = \langle \exists \overline{x}. ((\exists \overline{x}. \ S \ \overline{x}) \land R[\overline{X} \rightarrow \overline{x}] \land \neg \llbracket B \rrbracket [\overline{X} \rightarrow \overline{x}]) \\ \land \\ X_1 = x_1 \land \ldots \land X_n = x_n \rangle \end{array}$

- constraint S computed up to loop is discarded
- create new state satisfying invariant and loop exit condition
- Ink between pre and post loop states provided by VCs SVC (WHILE B DO { R } C) P = TAUT(P⇒R) ∧ TAUT(ASP C (R∧[[B]])⇒R) ∧ SVC C (R∧[[B]])

Two cultures have evolved from Floyd-Hoare ideas

- Bounded model checking (BMC)
 - unwind loops a finite number of times
 - then symbolically execute forwards
 - essentially $SP C P \Rightarrow Q$
 - automatically check states reached satisfy properties
- Full proof of correctness
 - generate verification conditions
 - usually backwards by computing weakest preconditions
 - essentially $P \Rightarrow WP C Q$
 - interactively prove resulting subgoal formulae
- Computing postconditions unifies BMC and full verification
 - symbolic execution is ASP calculation
 - add forward VCs for verification of loops
- Other application of Floyd-Hoare ideas
 - refinement: synthesize code to achive a postcondition (WP)
 - reverse engineering: execute symbolically to find out what code does (SP)

Two cultures have evolved from Floyd-Hoare ideas

- Bounded model checking (BMC)
 - unwind loops a finite number of times
 - then symbolically execute forwards
 - essentially $SP C P \Rightarrow Q$
 - automatically check states reached satisfy properties
- Full proof of correctness
 - generate verification conditions
 - usually backwards by computing weakest preconditions
 - essentially $P \Rightarrow WP C Q$
 - interactively prove resulting subgoal formulae
- Computing postconditions unifies BMC and full verification
 - symbolic execution is ASP calculation
 - add forward VCs for verification of loops
- Other application of Floyd-Hoare ideas
 - refinement: synthesize code to achive a postcondition (WP)
 - reverse engineering: execute symbolically to find out what code does (SP)

Overview of implementation

- Everything is programmed deduction in a theorem prover
 - semantic embedding plus custom theorem proving tools
 - for efficiency external oracles used to prune paths
 - oracle provenance tracking via theorem tags
- HOL4 used for implementation of theorem proving
 - provides higher order logic for representing semantics
 - LCF-style proof tools (deriving Hoare logic, solving VCs)
 - ML for proof scripting and general programming
- YICES used as oracle (future: Z3)
 - SMT solver from SRI International
 - used to quickly check conditional branch feasibility
 - 'blow away' easy VCs (hard ones by HOL4 interactive proof)
- Experiments needed to compare forwards vs backwards!

THE END

Slides at: http://www.cl.cam.ac.uk/~mjcg/Hoare75/

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009)

Frame count: 41 / 42

THE END

Slides at: http://www.cl.cam.ac.uk/~mjcg/Hoare75/

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009)

Frame count: 42 / 42