
Forward with Hoare!

2009: Tony Hoare is 75 and Hoare Logic is 40!

An Axiomatic Basis for
Computer Programming

C. A. R. Hoare, 1969

Overview of talk:

◮ Review of Hoare Logic
◮ Mechanical proof
◮ Forwards versus backwards

[Slides that follow are based on joint work with Hélène Colla vizza]

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 1 / 42



Hoare’s Axiomatic Basis for Computer Programming

◮ Originally both
◮ an axiomatic language definition method and
◮ a proof theory for program verification

◮ This talk focuses on the verification role
◮ after 40 years it is still a key idea in program correctness

◮ However, instead of
“... accepting the axioms and rules of inference as
the ultimately definitive specification of the
meaning of the language.”

can derive axioms and rules from language semantics

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 2 / 42



Range of methods for proving {P}C{Q}

◮ Bounded model checking (BMC)
◮ unwind loops a finite number of times
◮ then symbolically execute
◮ check states reached satisfy decidable properties

◮ Full proof of correctness
◮ add invariants to loops
◮ generate verification conditions
◮ prove verification conditions with a theorem prover

◮ Goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 3 / 42



Some history: concepts related to {P} C {Q}

◮ WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: wlp.C.Q from Dijkstra & Scholten)

◮ precondition WP C Q ensures Q holds after C terminates

◮ wlp.C.Q is weakest solution of P : ({P} C {Q})
( Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)

◮ SP C P is ‘strongest postcondition’
(sp.C.Q in Dijkstra & Scholten, Ch.12 – not stp.C.Q)

◮ SP C P holds after C terminates if started when P holds

◮ sp.C.P is strongest solution of Q : ({P} C {Q})

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 4 / 42



Defining specification notions by semantic embedding

◮ Semantics of commands C given by binary relation [[C]]

◮ [[C]](s, s′) means if C run in s then it will terminate in s′

◮ s is the initial state; s′ is a final state

◮ commands assumed deterministic – at most one final state
(“Formalizing Dijkstra” by J. Harrison for non-determinism)

◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′) ⇒ Q s′

◮ WP C Q =def λs. ∀s′. [[C ]](s, s′) ⇒ Q s′

◮ ⊢ {P}C{Q} = ∀s. P s ⇒ WP C Q s

◮ SP C P =def λs′. ∃s. P s ∧ [[C]](s, s′)

◮ ⊢ {P}C{Q} = ∀s. SP C P s ⇒ Q s

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 5 / 42



Details and notations
◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′) ⇒ Q s′

◮ P, Q : state → bool
◮ state = string 7→ value (finite map)
◮ s[x→v ] is the state mapping x to v and like s elsewhere
◮ [x1→v1; · · · ; xn→vn] has domain {x1, · · · , xn}; maps xi to vi
◮ [[C]] : state × state → bool
◮ [[B]] : state → bool
◮ [[E ]] : state → value
◮ WP C : (state → bool) → (state → bool)
◮ SP C : (state → bool) → (state → bool)

◮ Overload ∧, ∨, ⇒, ¬ to pointwise operations on predicates
◮ (P1 ∧ P2) s = P1 s ∧ P2 s
◮ (P1 ∨ P2) s = P1 s ∨ P2 s
◮ (P1 ⇒ P2) s = P1 s ⇒ P2 s
◮ (¬P) s = ¬(P s)

◮ Define: TAUT(P) =def ∀s. P s and SAT(P) =def ∃s. P s

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 6 / 42



Proving {P}C{Q} by calculating WP C Q

◮ Easy consequences of definition of WP
◮ WP (SKIP) Q = Q
◮ WP (X := E) Q = λs. Q(s[X→[[E ]]s])

◮ WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ WP (IF B THEN C1 ELSE C2) Q =
([[B]] ⇒ WP C1 Q) ∧ (¬[[B]] ⇒ WP C2 Q)

◮ WP (WHILE B DO C) Q =
([[B]] ⇒ WP C (WP (WHILE B DO C) Q)) ∧ (¬[[B]] ⇒ Q)

◮ To prove {P}C{Q} for straight line code

◮ calculate WP C Q . . . . . . . . . . back substitution + case splits
◮ prove ∀s. P s ⇒ WP C Q s . . . . . . . . . . use a theorem prover

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 7 / 42



Proving {P}C{Q} by calculating SP C P

◮ Easy consequences of definition of SP
◮ SP SKIP P = P
◮ SP (X := E) P = λs′. ∃s. P s ∧ (s′ = s[X→[[E ]]s])

◮ SP (C1;C2) P = SP C2 (SP P C1)

◮ SP (IF B THEN C1 ELSE C2) P =
SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

◮ SP (WHILE B DO C) P =
SP (WHILE B DO C) (SP (P ∧ [[B]]) C) ∨ (P ∧ ¬[[B]])

◮ To prove {P}C{Q} for straight line code

◮ calculate SP P C . . . . . assignment generated ∃s a problem
◮ prove ∀s′. SP C P s′ ⇒ Q s′ . . . . . . . . .use a theorem prover

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 8 / 42



Pruning conditional branches when going forwards

◮ Recall

SP (IF B THEN C1 ELSE C2) P =
SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

◮ Because SP C (λs. F) = λs′. F it follows that

(P ⇒ [[B]])
⇒
SP (IF B THEN C1 ELSE C2) P = SP C1 (P ∧ [[B]])

(P ⇒ ¬[[B]])
⇒
SP (IF B THEN C1 ELSE C2) P = SP C2 (P ∧ ¬[[B]])

◮ Hence can simplify if accumulated constraints implies test

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 9 / 42



Pruning conditional branches when going backwards

◮ Recall

WP (IF B THEN C1 ELSE C2) Q =
([[B]] ⇒ WP C1 Q) ∧ (¬[[B]] ⇒ WP C2 Q)

◮ Hence

([[B]] ⇒ WP C1 Q)
⇒
WP (IF B THEN C1 ELSE C2) Q = (¬[[B]] ⇒ WP C2 Q)

(¬[[B]] ⇒ WP C2 Q)
⇒
WP (IF B THEN C1 ELSE C2) Q = ([[B]] ⇒ WP C1 Q)

◮ Backwards pruning conditions involve C1 or C2

◮ forwards pruning natural – generalised execution
◮ forwards pruning conditions don’t involve C1 or C2

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 10 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{J ≤ I}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 11 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{J ≤ I}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 12 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{J ≤ I}

K := 0; {J ≤ I ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 13 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{J ≤ I}

K := 0; {J ≤ I ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {J ≤ I ∧ K = 0}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 14 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{J ≤ I}

K := 0; {J ≤ I ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {J ≤ I ∧ K = 0}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 15 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{I < J}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 16 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{I < J}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 17 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{I < J}

K := 0; {I < J ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 18 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{I < J}

K := 0; {I < J ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {I < J ∧ K = 1}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 19 / 42



Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{I < J}

K := 0; {I < J ∧ K = 0}
IF I < J THEN K := K + 1 ELSE SKIP; {I < J ∧ K = 1}
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = J − I}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 20 / 42



Summary so far

◮ Define {P}C{Q}, WP C Q and SP C P from semantics

◮ Prove rules for calculating WP C Q and SP C P
◮ one-off proofs

◮ For particular P, C, Q, to prove {P}C{Q}:
◮ calculate WP C Q by backwards substitution
◮ prove ∀s. P s ⇒ WP C Q s using theorem prover

or
◮ calculate SP C P by symbolic execution
◮ prove ∀s′. SP C P s′ ⇒ Q s′ using theorem prover

◮ Next: what about loops?

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 21 / 42



Can’t compute finite WP or SP for loops

◮ Loop-free: can calculate finite formulae for WP and SP

◮ Loops: no simple finite formula for WP or SP in general

◮ WP (WHILE B DO C) Q =
([[B]] ∧ WP C (WP (WHILE B DO C) Q)) ∨ (¬[[B]] ∧ Q)

◮ SP (WHILE B DO C) P =
(SP (WHILE B DO C) (SP C (P ∧ [[B]]))) ∨ (P ∧ ¬[[B]])

◮ Solution inspired by Hoare logic rule (R is an invariant)

⊢ P ⇒ R ⊢ {R ∧ B}C{R} ⊢ R ∧ ¬B ⇒ Q
⊢ {P}WHILE B DO C{Q}

◮ Use approximate WP or SP plus verification conditions

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 22 / 42



Method of verification conditions (VCs)
◮ Define AWP and ASP (“A” for “approximate”)

◮ like WP, SP for skip, assignment, sequencing, conditional

◮ for while-loops assume invariant R magically supplied

AWP (WHILE B DO {R} C) Q = R

ASP (WHILE B DO {R} C) P = R ∧ ¬[[B]]

◮ Define WVC C Q and SVC C P to generate VCs
(details later)

◮ Prove {P}C{Q} using theorems

WVC C Q ⇒ {AWP C Q}C{Q}

SVC C P ⇒ {P}C{ASP C P}

◮ If C is loop-free (i.e. straight line code) then this becomes

T ⇒ {WP C Q}C{Q}

T ⇒ {P}C{SP C P}

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 23 / 42



A problem
◮ Have SP C (λs. F) = (λs′. F) so can reduce

SP (IF B THEN C1 ELSE C2) P
to

SP C1 (P ∧ [[B]]) or SP C2 (P ∧ ¬[[B]])
if P determines value of [[B]]

◮ But ASP C (λs. F) is not necessarily (λs′. F)
ASP (WHILE B DO {R} C) P = R ∧ ¬[[B]]

so cannot reduce ASP (IF B THEN C1 ELSE C2) P

◮ A solution is to define
ASP (WHILE B DO {R} C) P =
λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ Can then show ASP C (λs. F) = (λs′. F)

◮ A dual argument suggests defining

AWP (WHILE B DO {R} C) Q = λs. SAT(¬Q) ⇒ R s

(note: SAT(¬Q) = ¬(TAUT(Q)))
Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 24 / 42



A problem
◮ Have SP C (λs. F) = (λs′. F) so can reduce

SP (IF B THEN C1 ELSE C2) P
to

SP C1 (P ∧ [[B]]) or SP C2 (P ∧ ¬[[B]])
if P determines value of [[B]]

◮ But ASP C (λs. F) is not necessarily (λs′. F)
ASP (WHILE B DO {R} C) P = R ∧ ¬[[B]]

so cannot reduce ASP (IF B THEN C1 ELSE C2) P

◮ A solution is to define
ASP (WHILE B DO {R} C) P =
λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ Can then show ASP C (λs. F) = (λs′. F)

◮ A dual argument suggests defining

AWP (WHILE B DO {R} C) Q = λs. SAT(¬Q) ⇒ R s

(note: SAT(¬Q) = ¬(TAUT(Q)))
Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 25 / 42



Summary: definitions of ASP and AWP
ASP SKIP P = P

ASP (X := E) P = λs′. ∃s. P s ∧ (s′ = s[X→[[E ]]s])

ASP (C1;C2) P = ASP C2 (ASP C1 P)

ASP (IF B THEN C1 ELSE C2) P =
SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

AWP SKIP Q = Q

AWP (X := E) Q = λs. Q(s[X→[[E ]] s ])

AWP (C1;C2) Q = AWP C1 (AWP C2 Q)

AWP (IF B THEN C1 ELSE C2) Q =
([[B]] ⇒ WP C1 Q) ∧ (¬[[B]] ⇒ WP C2 Q)

AWP (WHILE B DO {R} C) Q = λs. SAT(¬Q) ⇒ R s

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 26 / 42



Calculating verification conditions
◮ SVC P C is a ‘forwards’ calculation

SVC SKIP P = T
SVC (X := E) P = T
SVC (C1;C2) P = SVC C1 P ∧ SVC C2 (ASP C1 P)

SVC (IF B THEN C1 ELSE C2) P =
SAT(P ∧ [[B]] ) ⇒ SVC C1 (P ∧ [[B]]) ∧
SAT(P ∧ ¬[[B]] ) ⇒ SVC C2 (P ∧ ¬[[B]])

SVC (WHILE B DO {R} C) P =
TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]])⇒ R) ∧ SVC C (R ∧ [[B]])

◮ WVC C Q is a standard ‘backwards’ calculation
WVC (SKIP) Q = T
WVC (X := E) Q = T
WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q
WVC (IF B THEN C1 ELSE C2) Q =

TAUT(Q) ∨ (WVC C1 Q ∧ WVC C2 Q)

WVC (WHILE B DO {R} C) Q =
TAUT(R ∧ [[B]] ⇒ AWP C R) ∧ TAUT(R ∧ ¬[[B]] ⇒ Q) ∧ WVC C R

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 27 / 42



Calculating verification conditions
◮ SVC P C is a ‘forwards’ calculation

SVC SKIP P = T
SVC (X := E) P = T
SVC (C1;C2) P = SVC C1 P ∧ SVC C2 (ASP C1 P)

SVC (IF B THEN C1 ELSE C2) P =
SAT(P ∧ [[B]] ) ⇒ SVC C1 (P ∧ [[B]]) ∧
SAT(P ∧ ¬[[B]] ) ⇒ SVC C2 (P ∧ ¬[[B]])

SVC (WHILE B DO {R} C) P =
TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]])⇒ R) ∧ SVC C (R ∧ [[B]])

◮ WVC C Q is a standard ‘backwards’ calculation
WVC (SKIP) Q = T
WVC (X := E) Q = T
WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q
WVC (IF B THEN C1 ELSE C2) Q =

TAUT(Q) ∨ (WVC C1 Q ∧ WVC C2 Q)

WVC (WHILE B DO {R} C) Q =
TAUT(R ∧ [[B]] ⇒ AWP C R) ∧ TAUT(R ∧ ¬[[B]] ⇒ Q) ∧ WVC C R

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 28 / 42



Calculating verification conditions
◮ SVC P C is a ‘forwards’ calculation

SVC SKIP P = T
SVC (X := E) P = T
SVC (C1;C2) P = SVC C1 P ∧ SVC C2 (ASP C1 P)

SVC (IF B THEN C1 ELSE C2) P =
SAT(P ∧ [[B]] ) ⇒ SVC C1 (P ∧ [[B]]) ∧
SAT(P ∧ ¬[[B]] ) ⇒ SVC C2 (P ∧ ¬[[B]])

SVC (WHILE B DO {R} C) P =
TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]])⇒ R) ∧ SVC C (R ∧ [[B]])

◮ WVC C Q is a standard ‘backwards’ calculation
WVC (SKIP) Q = T
WVC (X := E) Q = T
WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q
WVC (IF B THEN C1 ELSE C2) Q =

TAUT(Q) ∨ (WVC C1 Q ∧ WVC C2 Q)

WVC (WHILE B DO {R} C) Q =
TAUT(R ∧ [[B]] ⇒ AWP C R) ∧ TAUT(R ∧ ¬[[B]] ⇒ Q) ∧ WVC C R

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 29 / 42



Calculating verification conditions
◮ SVC P C is a ‘forwards’ calculation

SVC SKIP P = T
SVC (X := E) P = T
SVC (C1;C2) P = SVC C1 P ∧ SVC C2 (ASP C1 P)

SVC (IF B THEN C1 ELSE C2) P =
SAT(P ∧ [[B]] ) ⇒ SVC C1 (P ∧ [[B]]) ∧
SAT(P ∧ ¬[[B]] ) ⇒ SVC C2 (P ∧ ¬[[B]])

SVC (WHILE B DO {R} C) P =
TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]])⇒ R) ∧ SVC C (R ∧ [[B]])

◮ WVC C Q is a standard ‘backwards’ calculation
WVC (SKIP) Q = T
WVC (X := E) Q = T
WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q
WVC (IF B THEN C1 ELSE C2) Q =

TAUT(Q) ∨ (WVC C1 Q ∧ WVC C2 Q)

WVC (WHILE B DO {R} C) Q =
TAUT(R ∧ [[B]] ⇒ AWP C R) ∧ TAUT(R ∧ ¬[[B]] ⇒ Q) ∧ WVC C R

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 30 / 42



Symbolic execution of loops
ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ New state satisfying invariant R and loop-exit condition

◮ Pre and post loop states linked by verification conditions
SVC (WHILE B DO {R} C) P =

TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]]) ⇒ R) ∧ SVC C (R ∧ [[B]])

◮ Various approaches to symbolic execution:
◮ generate fresh set of state variables

(need some metatheoretic proof of correctness)

◮ manage variable scopes inside logic using ∃
(correct-by-construct, but inefficient)

◮ Question (Plotkin)
◮ is there a semantics characterisation of AWP and ASP ?

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 31 / 42



Symbolic execution of loops
ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ New state satisfying invariant R and loop-exit condition

◮ Pre and post loop states linked by verification conditions
SVC (WHILE B DO {R} C) P =

TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]]) ⇒ R) ∧ SVC C (R ∧ [[B]])

◮ Various approaches to symbolic execution:
◮ generate fresh set of state variables

(need some metatheoretic proof of correctness)

◮ manage variable scopes inside logic using ∃
(correct-by-construct, but inefficient)

◮ Question (Plotkin)
◮ is there a semantics characterisation of AWP and ASP ?

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 32 / 42



Shallow embedding of symbolic execution in logic
◮ ⊢ SP (X := E) P = λs′. ∃s. P s ∧ (s′ = s[X→[[E ]]s])

◮ Consider P of form
λs. ∃x1 · · · xn. S ∧ (s = [X→e ])

where
◮ X1, . . . , Xn are distinct program variables (string constants)
◮ x1, . . . , xn are logic variables (i.e. symbolic values)
◮ S, e1, . . . , en only contain variables x1, . . . , xn and constants
◮ [X→e ] abbreviates [X1→e1; . . . ; Xn→en]

◮ It follows that

⊢ SP (Xi := Ei) (λs. ∃x1 · · · xn. S ∧ (s = [X→e ] ))

= λs.∃x1 · · · xn.S ∧ (s = [X→e ][Xi → ([[Ei ]] [X→e ])] )

where
◮ [X→e ][Xi → ([[Ei ]] [X→e ])]

= [X1→e1, . . . , Xi → ([[Ei ]] [X→e ]), . . . , Xn→en]

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 33 / 42



Symbolic state notation for predicates

◮ Abbreviate
λs. ∃x1 · · · xn. S ∧ (s = [X→e ])

as

〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

then it follows that
SP (Xi := Ei) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei ]] [X→e ] ∧ . . . ∧ Xn=en〉

◮ Computing SP is now symbolic execution
◮ symbolic state term: 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ no new existential quantifiers generated by assignments!
◮ SP SKIP P = P
◮ SP (C1;C2) P = SP C2 (SP C1 P)

◮ Simplersymbolicstate representionOKfor loop-freecode

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 34 / 42



Symbolic state notation for predicates

◮ Abbreviate
λs. ∃x1 · · · xn. S ∧ (s = [X→e ])

as

〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

then it follows that
SP (Xi := Ei) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei ]] [X→e ] ∧ . . . ∧ Xn=en〉

◮ Computing SP is now symbolic execution
◮ symbolic state term: 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ no new existential quantifiers generated by assignments!
◮ SP SKIP P = P
◮ SP (C1;C2) P = SP C2 (SP C1 P)

◮ Simplersymbolicstate representionOKfor loop-freecode

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 35 / 42



Symbolic execution of conditional branches
◮ Recall

SP (IF B THEN C1 ELSE C2) P
= SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

◮ Now
〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 ∧ [[B]]

= (λs. ∃x1 · · · xn. S ∧ (s = [X→e ])) ∧ [[B]]

= λs. (∃x1 · · · xn. S ∧ (s = [X→e ])) ∧ [[B]]s
= λs. ∃x1 · · · xn. S ∧ (s = [X→e ]) ∧ [[B]]s
= λs. (∃x1 · · · xn. S ∧ (s = [X→e ]) ∧ [[B]] [X→e ]

= λs. ∃x1 · · · xn. (S ∧ [[B]] [X→e ]) ∧ (s = [X→e ])

= 〈∃x . (S ∧ [[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ Hence
SP (IF B THEN C1 ELSE C2) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= SP C1 〈∃x . (S ∧ [[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉
∨
SP C2 〈∃x . (S ∧ ¬[[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ Prune paths by checking S ∧ [[B]] [X→e ] and S ∧ ¬[[B]] [X→e ]

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 36 / 42



Approximate symbolic execution of while-loops

◮ Symbolically execute straight line code as before

◮ For while-loops, recall from previous slide

ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ Hence execute while-loops as follows

ASP (WHILE B DO {R} C) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= 〈∃x. ((∃x . S x) ∧ R[X→x ] ∧ ¬[[B]] [X→x ])
∧
X1=x1 ∧ . . . ∧ Xn=xn〉

◮ constraint S computed up to loop is discarded
◮ create new state satisfying invariant and loop exit condition
◮ link between pre and post loop states provided by VCs

SVC (WHILE B DO {R} C) P =
TAUT(P⇒R) ∧ TAUT(ASP C (R∧[[B]])⇒R) ∧ SVC C (R∧[[B]])

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 37 / 42



Two cultures have evolved from Floyd-Hoare ideas
◮ Bounded model checking (BMC)

◮ unwind loops a finite number of times
◮ then symbolically execute forwards
◮ essentially SP C P ⇒ Q
◮ automatically check states reached satisfy properties

◮ Full proof of correctness
◮ generate verification conditions
◮ usually backwards by computing weakest preconditions
◮ essentially P ⇒ WP C Q
◮ interactively prove resulting subgoal formulae

◮ Computing postconditions unifies BMC and full verification
◮ symbolic execution is ASP calculation
◮ add forward VCs for verification of loops

◮ Other application of Floyd-Hoare ideas
◮ refinement:

synthesize code to achive a postcondition (WP )
◮ reverse engineering:

execute symbolically to find out what code does (SP )

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 38 / 42



Two cultures have evolved from Floyd-Hoare ideas
◮ Bounded model checking (BMC)

◮ unwind loops a finite number of times
◮ then symbolically execute forwards
◮ essentially SP C P ⇒ Q
◮ automatically check states reached satisfy properties

◮ Full proof of correctness
◮ generate verification conditions
◮ usually backwards by computing weakest preconditions
◮ essentially P ⇒ WP C Q
◮ interactively prove resulting subgoal formulae

◮ Computing postconditions unifies BMC and full verification
◮ symbolic execution is ASP calculation
◮ add forward VCs for verification of loops

◮ Other application of Floyd-Hoare ideas
◮ refinement:

synthesize code to achive a postcondition (WP )
◮ reverse engineering:

execute symbolically to find out what code does (SP )

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 39 / 42



Overview of implementation

◮ Everything is programmed deduction in a theorem prover
◮ semantic embedding plus custom theorem proving tools
◮ for efficiency external oracles used to prune paths
◮ oracle provenance tracking via theorem tags

◮ HOL4 used for implementation of theorem proving
◮ provides higher order logic for representing semantics
◮ LCF-style proof tools (deriving Hoare logic, solving VCs)
◮ ML for proof scripting and general programming

◮ YICES used as oracle (future: Z3)
◮ SMT solver from SRI International
◮ used to quickly check conditional branch feasibility
◮ ‘blow away’ easy VCs (hard ones by HOL4 interactive proof)

◮ Experiments needed to compare forwards vs backwards!

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 40 / 42



THE END

Slides at: http://www.cl.cam.ac.uk/~mjcg/Hoare75/

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 41 / 42

http://www.cl.cam.ac.uk/~mjcg/Hoare75/


THE END

Slides at: http://www.cl.cam.ac.uk/~mjcg/Hoare75/

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 42 / 42

http://www.cl.cam.ac.uk/~mjcg/Hoare75/

