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Abstract. In most applications for autonomous robots, the detection
of objects in their environment is of significant importance. As many
robots are equipped with cameras, this task is often solved by image
processing techniques. However, due to limited computational resources
on mobile systems, it is common to use specialized algorithms that are
highly adapted to the respective scenario. Sophisticated approaches such
as Deep Neural Networks, which recently demonstrated a high perfor-
mance in many object detection tasks, are often difficult to apply. In
this paper, we present JET-Net (Just Enough Time), a model frame
for efficient object detection based on Convolutional Neural Networks.
JET-Net is able to perform real-time robot detection on a NAO V5 robot
in a robot football environment. Experiments show that this system is
able to reliably detect other robots in various situations. Moreover, we
present a technique that reuses the learned features to obtain more infor-
mation about the detected objects. Since the additional information can
entirely be learned from simulation data, it is called Simulation Transfer
Learning.

1 Introduction

Depending on the application domain, a mobile robot needs to detect different
objects with a certain reliability and precision. In the RoboCup Standard Plat-
form League, to which our work has been applied, two important categories of
moving objects are the ball and the other robots. For the ball, multiple sophis-
ticated detection techniques, mostly based on machine learning, already exist
[25,19,15]. However, the reliable detection of other robots is a much more com-
plex problem fur multiple reasons: a robot is not fully symmetric and thus looks
different depending on the angle of view, it can have different postures (e.g.
standing, lying, or getting up), and, especially when it is close, often only parts
of a robot are in the current field of view. Futhermore, changing lighting condi-
tions might make it difficult to use the robot’s colored jersey as a reliable cue.
Nevertheless, some highly spezialized robot detection approaches have already
been implemented and are currently in use, as described in Sect. 2.2.

In recent years, detecting objects by using Deep Neural Networks has been
very successful in many domains, some examples are given in Sect. 2.1. These
approaches are able to robustly generalize over deviations in perspective, shape,



and lighting conditions. However, to achieve a certain level of robustness and
precision, many network layers are required, resulting in a high demand of com-
puting power, which is not available on many mobile platforms such as the NAO
V5, which was the target platform for our development and which also needs to
carry out many other tasks that require computing time.

The main contribution of this paper is an adaptable network architecture that
is able to perform object detection on computationally limited robot platforms.
Although the architecture itself is kept general, its performance is demonstrated
for the task of robot detection, which it is able to carry out with a precision
and robustness that is suitable for robot football. In comparison to most related
works, the network carries out the full detection process and does not only
classify preselected candidate regions. An additional contribution is an extension
to the main network that makes it possible to not only perform object detection
but also to learn additional properties of the objects entirely from the simulation.
This is demonstrated by learning the distances to detected robots.

The remainder of this paper is organized as follows: First, Section 2 discusses
related approaches for object detection by Deep Neural Networks in general as
well as for object detection in the RoboCup Standard Platform League domain
in particular. Afterwards, a description of our approach is given in Section 3. An
evaluation of the accuracy and the performance of our approach is presented in
Section 4. Finally, the paper concludes in Section 5.

2 Related Work

2.1 Object Detection by Deep Neural Networks

There are many recently published works regarding object detection, most of
them aim for two major objectives: a high mean average precision (MAP) and
a low inference time. Published in 2015, Faster R-CNN [24] was the state of the
art in terms of MAP for a long time. This is due to its two-staged architecture,
which comes at the costs of increased runtime. Furthermore, Faster R-CNN has
introduced anchor boxes, which are used until today. The Single Shot MultiBox
Detector (SSD) [14] approach takes many aspects of Faster R-CNN and puts
them into a one-staged detector by removing the preselection step. This means
that the classifier has eventually to deal with many simple negatives that take
away the focus form the hard examples. To compensate these disadvantages, the
hard negative mining was presented, which allows the detector to concentrate
on the difficult examples. In contrast to SSD, the YOLO approach [21,22] is
optimized to reach extraordinary inference time. This approach has been itera-
tively improved so that the latest version YOLOv3 [23] offers a good trade-off
between MAP and inference time. In 2017, the Retina Net [13] one-staged de-
tector made it finally possible to outperform two-staged detectors by applying a
technique called Focal Loss. Additionally, it uses a feature pyramid architecture
which presents the current state of the art [12].



2.2 Object Detection in RoboCup Soccer

In recent years, Deep Learning has already been successfully used for the detec-
tion of the Standard Platform League’s new ball [25,19,15]. A similar approach
is also used by [1] for detecting robots. However, all these approaches have in
common that they use neural networks for classifying previously computed can-
didate regions and thus depend on other software components. In the RoboCup
Humanoid League, a full detection approach, which would not have real-time
inference on a NAO robot, has been presented by [26].

In addition to these machine learning approaches, many other solutions exist
that heavily rely on the particular design of the robot football environment and
a robust color classification. By knowing that everything takes place on an even
green floor, objects can be detected by just finding gaps in green [6,11]. In the
SPL, the colors of the robots as well as their jersey colors are known, this makes
a direct detection based on a previously conducted color classification possible,
as described, for instance, by [16] and [3]. This approach is also applied in some
other leagues, for instance in the Small-Size Robot League’s SSL-Vision [28].

However, due to changes in the RoboCup rules that require more natural
lighting conditions, these approaches become less maintainable und applicable
by the time. One recently published approach by [10] therefore combines basic
robot vision techniques on grayscale images with candidate classification through
a Convolutional Neural Network to detect all objects on an SPL field. Further-
more, approaches that rely on a neural-network-based semantic segmentation
also become applied, for instance by [2].

3 JET-Net: The Just Enough Time Approach

In this section, we explain JET-Net’s model design, followed by the applied
training. Then we show how we use JET-Net for robot detection in the SPL. In
the end, we explain how to use Simulation Transfer Learning to predict more
characteristics while only using data from simulation.

3.1 General Model Design

Even though we want to apply the object detection to the specific task of robot
detection in the SPL, JET-Net provides a general framework that can be adapted
to different tasks. Therefore, we do not use any special features of the NAO as
in [18] and restrict ourself to the size and ratio of the object. However, within
these restrictions, we want to make everything as task-specific as possible. That
means that we adapt our resolution to the camera and computational power of
the robotic system. Furthermore, we do not predict thousands of classes but one
or two. Whenever there is a design question, we always take just enough to fulfill
the task. This results in an efficient architecture that needs just enough time to
do its task, without any significant overhead. Our model design frame is used to
define a basic architecture, which is optimized afterwards.



Model Frame For the model design, we define a frame that leads the design
process. This frame consists of three units. We start by using alternating Feature
Modules and Scale Modules to get features of different hierarchy levels. In the
end, we add a layer for the bounding box prediction, which uses anchor boxes
as introduced in [24].

• Feature Module: This module uses stacked 3x3 convolutions to extract
the important features. The number of layers per module and the number
of filters are hyperparameters. Each Feature Module starts with a Batch
Normalization.

• Scale Module: This module follows directly after every Feature Module. It
reduces the image size by a factor of two. We tried different approaches for
the scaling. As we have a natural lack of parameters in small neural networks,
we choose 3x3 convolutions with a stride of 2 over 2x2 convolutions and Max
Pooling. However, the number of filters will remain a hyperparameter.

• Box Prediction: This very last network layer predicts the bounding boxes.
Here, 1x1 convolutions are used to determine the five box parameters for
every cell in the remaining image. The number of anchor boxes per cell is a
hyperparameter here.

Speed Up Even though one should choose a minimal input size and a
lightweight model design to achieve a fast inference, we are not satisfied by the
efficiency of normal convolutions. For this purpose, we chose the MobileNet [7]
approach over other techniques such as SqueezeNet [8]. Admittedly, SqueezeNet
reduces the number of parameters, but there is hardly a faster inference. There-
fore, its usage would be rather counterproductive, as our small network has a
natural lack of parameters. This is why we go with the MobileNet approach and
replace some convolutions with Separable Convolutions.

For 3x3 convolutions, one can save for example 15.3% of the calculations
when using 24 filters like we did for our robot detector. However, it is not always
advisable to use Separable Convolution. When working with grayscale images,
we only have one channel at the input layer and the use of Separable Convolution
would lead to an increase in calculations. The same goes for the box prediction
layer, where 1x1 convolutions are applied. Furthermore, since layers deeper in the
network operate on smaller images, the acceleration has not such a big influence.
Therefore, it is sometimes worth to choose normal convolution in those layers to
get more parameters while retaining a good inference time.

3.2 Training

As usual for this kind of object detector, we used two different loss functions
for training. Additionally, we present our augmentation steps and show, how we
can achieve even more speed up the inference time by applying pruning.



Loss Functions The task of finding bounding boxes for objects in the image
consists of two subtasks: Determining if a certain area shows a wanted object and
finding the exact box. For the corresponding training, we propose the following
loss functions:

MACE Loss Each anchor box needs to be classified whether it contains an
object whose bounding box needs to be found or not. This is not a trivial task.
As we have so many potential anchor boxes, many of them are quite easy to
classify as negatives. This causes the problem that the optimization does not
concentrate on the hard examples. But we actually care more about those that
are hard to classify. This is also the big advantage of two-staged detectors, as
they filter the easy examples in the first step, so that they only need to classify
the hard examples in the second stage. Other one-staged detectors already tried
to deal with this problem: SSD proposed hard negative mining, where only a
fixed number of the hardest examples are used to calculate the loss. The Focal
Loss approach introduces a weighting which weights bigger errors higher. For
a vector of errors between label and prediction yerr, (Equation 1) shows how
the Focal Loss is calculated. We took that approach but replaced the negative
logarithmic error by the mean squared error. This allows to sum up the equation
into i2+γ . Furthermore, we discovered that γ = 1 works quite well for our tasks.
Therefore, we will refer to the used loss function (Equation 2) as mean absolute
cubed error (MACE) .

FocalLoss(yerr) =
1

|yerr|
·
∑
i∈yerr

−log(1− i) · iγ (1)

MACE(yerr) =
1

|yerr|
·
∑
i∈yerr

i2 · i1 =
1

|yerr|
·
∑
i∈yerr

i3 (2)

IoU Loss The loss, which rates the position and size of the bounding box, is
responsible for the other four parameters of the bounding box: x-position, y-
position, width, and height. Other approaches use a variant of the absolute
distance between the wanted values and the predictions (Faster R-CNN) or the
relative distance (SSD). We propose a more abstract measurement of the loss
by using the mean IoU (Intersection over Union) value as the loss function.
We argue that those four values do not contribute equally to a good matching
bounding box. However, the IoU value does take all aspects into account and
returns one value.

IoU-Loss(true, pred) = 1−MEAN(IoU(truebox, predbox)) (3)

Augmentation To achieve a better generalization, we use data augmentation.
While some publications propose an exhausting approach for augmentation, we
concentrate on creating only images that could actually appear in reality. This
ensures that we don’t use capacities for images that will never appear. This
leaves us with the following procedures:



Layertype Filter b.p. Filter a.p. Filter Size Strides Padding Output

BNorm - - - - - 80x60
Conv 24 16 3x3 1 Same 80x60

SConv 24 24 3x3 2 Same 40x30

BNorm - - - - - 40x30
SConv 24 16 3x3 1 Same 40x30
SConv 24 20 3x3 1 Same 40x30
SConv 24 20 3x3 2 Same 20x15

BNorm - - - - - 20x15
SConv 24 20 3x3 1 Same 20x15
SConv 24 20 3x3 1 Same 20x15
SConv 24 24 3x3 1 Same 20x15
SConv 24 24 3x3 2 Same 10x8

BNorm - - - - - 10x8
Conv 24 24 3x3 1 Same 10x8
Conv 24 24 3x3 1 Same 10x8
Conv 24 24 3x3 1 Same 10x8
Conv 24 24 3x3 1 Same 10x8

Conv 20 20 3x3 1 Same 10x8

Inference time 12.0ms 9.0ms

Table 1. Final model design for robot detection on a NAO V5. The table
shows our JET-Net instantiation for robot detection. Filter b.p. means before pruning
and a.p. after pruning, respectively. The inference time has been measured on a NAO
V5 robot.

• Zoom: For the zoom operation, the image size is increased by a factor
between 1.0 and 1.5. Since the input size remains untouched, we can now
pick a cutout from the zoomed image.

• Flip: Since the playing field and the robots are symmetrical, we can flip the
image at the vertical axis. A flip at the horizontal axis is not performed, as
it would produce impossible images.

• Ground Truth Box Noise: To apply more noise, the borders of the ground
truth boxes are varied. This makes it way harder to memorize certain boxes.
To vary the boxes, each border line is moved in a certain area (±5%).

Pruning Another way of speeding up calculations is to not execute them in the
first way. For that reason, we use pruning to remove those filters that contribute
the least. In [17], many pruning methods are compared. Although the normed
activation was not the best pruning method, it was still a very good one and is
comparatively easy to implement and calculate. A crucial part of the pruning is
the fine tuning between the different pruning runs to compensate the damage.
This leaves us with an iterative algorithm that looks for the filter with the
least activation, removes it, and treats the dealt damage with fine tuning. This



Fig. 1. Sampling Levels. For the robot detection application, we tried different sam-
pling levels from 640x480 (outer left) to 40x30 (outer right). Each images shows a
quarter of the pixels used in the image before. We chose 80x60 (second from right) for
input, as it is the lowest resolution that still shows every robot.

can be repeated until a certain size is reached or the loss drops under a certain
threshold. As the number of filters in the box prediction unit is fixed, we excluded
this from the pruning process. The resulting filter counts can be seen in Table 1.
The pruning allowed us to reduce the inference time from 12.0 ms to 9.0 ms.

3.3 Application: Just Enough Robot Detection

For the scenario of the SPL, we created an instantiation of our model frame.
As we use the current B-Human software stack [25], the inference on the robot
is performed by B-Human’s JIT compiler [27], which is able to process four
convolutional filters at a time and which can process up to 24 filters fast. Our
proposed network takes this into account. Furthermore, we take advantage of
the fact that convolutions are cheaper on smaller images, as they don’t need to
be applied so often. The final model is described in Table 1. For the training, we
used images from both sources, reality as well as simulation. As the B-Human
framework provides images with a resolution of 640x480 pixels in YUV422 color
space, some preprocessing is needed before we can pass the data to the network:

• Color space conversion: As multiple ball detectors for this domain have
already shown, the use of only one channel, the Y channel, is enough to
achieve good results and contributes to more robustness.

• Normalization: Because mobile robots might deal with changing and chal-
lenging lighting conditions, a 2% min-max normalization is applied.

• Subsampling: Object classifiers such as the ball detectors often classify
32x32 pixels or less. However, in this scenario, we deal with the whole image
instead of small patches. Therefore, we scale the image to an input size of
80x60 pixels (see Figure 1).

3.4 Simulation Transfer Learning

When we look from a more global point of view, a further possibility for opti-
mization appears: Instead of just improving the inference time, we can reuse the
features created for the detection task and use them to estimate further char-
acteristics of the detected object, such as the distance. However, labeling those



Discriminator Accuracy
GAN-Training Both sources Sim only

before 75,7% 58,4%
after 64,2% 58,2%

Fig. 2. GAN-Training. The table shows the training results before and after the
GAN training. You can see that only the use of images from both sources provides us
with us a high level of anonymization. While the discriminator is able to find some rule
for the real images of the training data to tell them apart, it is more or less randomly
guessing for the simulation data in the training data. And finally, the discriminator
has no clue for the test data.

features is an annoying and exhausting task. Therefore, we want our network
to use features for the robot detection that exist in the reality as well as in the
simulation. To achieve this, we train our network not only with real images but
also with images generated by a simulation. This forces the network to learn
features for both sources. Those features could end up in two separated sets: one
for real images and one for artificial images. However, as our network is so small,
it already learns some features that appear in both sources. We finalize those
features by applying a form of training that is similar to Generative Adversarial
Network (GAN) training [5]. For this, we define the whole network, except for
the box prediction layer, as the generator and create a discriminator which is
almost as powerful as the box prediction layer (see Figure 3). Afterwards, we
alternatingly train the discriminator and the box prediction layer with the gen-
erator. This results in a state, where the network cannot tell apart the simulated
images and the real ones. When we reach this state, we can learn additional fea-
ture, like the distance, by using simulated images only. To do this, we freeze the
generator and ignore the loss of the real images for the additional features, as we
don’t have valid labels for them. In this way, the real images are only used for the
bounding boxes while we can obtain other characteristics from the simulation.
In Figure 2, you can see that even before the GAN training the learned features
deliver almost no information from which we can derive the source. Only through
overfitting on the training data, the discriminator is somehow able to label some
of the images right. These are promising results, which imply that it could be
possible to use these features to learn more characteristics only from simulation
images as almost every information about the image source is vanished. We refer
to this technique as Simulation Transfer Learning.



Fig. 3. GAN Architectures. The left image shows a typical GAN architecture. The
image from the simulation is processed by the generator (G) to look like a real image.
Afterwards, both images are passed to the discriminator (D) which tries to distinguish
both real images and simulation images. On the right side, our adapted architecture is
shown: We send images from both sources through the generator (G), as we just want
them to look alike.

4 Evaluation

For the evaluation of our approach, we measure the performance of the robot de-
tector. Therefore, we trained the proposed model (Table 1) with 27.000 publicly
available images from ImageTagger [4] and 28.000 images generated in simula-
tion by SimRobot [9]1. Additionally, we used the simulated images to gather the
distances of the robots, which were used for Simulation Transfer Learning. We
do this by executing two experiments: a static setup and a dynamic one.

Detected Robots Distance Mean Distance Std Deviation
Distance JET-Net B-Human JET-Net B-Human JET-Net B-Human

0.3m 2/2 0/2 - - - -
1.5m 9/9 8/9 1.4m 1.2 m 0.2 m 0.1m
3.0m 8/9 8/9 3.0m 2.7 m 0.5 m 0.5 m
4.5m 7/9 1/9 5.1m 3.7 m 0.6 m 0.6 m
6.0m 1/9 0/9 - - - -
9.0m 0/9 0/9 - - - -

Table 2. Results of the static evaluation. The column Detected Robots shows how
many of the nine poses have been recognized. Distance Mean and Standard Deviation
show the results of the distance prediction through all poses.

4.1 Different Distances and Poses

For evaluating the static setup, we placed one of our robots at the end of the field.
Then we defined five distances (1.5 m, 3 m, 4.5 m, 6 m, 9 m) and three different

1 The generated images as well as a script for downloading the datasets that we
used from ImageTagger are available online at https://sibylle.informatik.

uni-bremen.de/public/JET-Net/

https://sibylle.informatik.uni-bremen.de/public/JET-Net/
https://sibylle.informatik.uni-bremen.de/public/JET-Net/


Fig. 4. Evaluation poses. Besides some
standard poses like standing, we tried four
special poses. a) gorilla pose b) keeper
jump c) lying d) two robots.

Fig. 5. Overview of the evaluation setup. We placed the robot that has to be
detected on one the positions marked by balls after the other. The robot in the red
jersey has to detect it.

angles for each distance (left, center, right). For each distance, we tested nine
different poses, most of them used for the center position: robot stands frontal
(1), robots stands sidewards (2), like 1 but at left position (3), like 1 but at right
position (4), gorilla position (5), robot lies on the floor (6), like 1 but with ball in
front of the robot (7), two robots standing behind each other (8), after goalkeeper
jump (9). Some poses are shown in Figure 4, Figure 5 provides an overview of
the setup. Furthermore, we evaluate pose 1 and 2 also for 0.3 m to evaluate close-
ups. For each distance and pose, we checked, if the robot is detected as well as
the error of the estimated distance. For more meaningful results, we compare
our robot detector to the B-Human’s current implementation [25].

The results show that our proposed network detects the robot in every pose in
the area until 4.5 m. Only the lying robot is problematic from 1.5 m on, which is
probably because its representation in the box prediction layer is too small. Until
the distance of 1.5 m it is also possible to tell the two robots from pose 8 apart.
Starting from the distance of 6 m almost no robot is recognized. The B-Human
detector in comparison is able to detect robots in a distances between 1.5 m and
3 m independently from the pose. However, lying robots are often detected as two
robots. The B-Human detector calculates the distance to a robot by detecting a
robot’s feet and then incorporating the knowledge about its camera’s perspective.
Within an area of 3 m the mean of the estimated distance over all poses of our
approach is more accurate than the B-Human solution. Which has, on the other
hand, a smaller variance. An overview of the results is given in Table 2.



Recall Precision IoU MAP
approach total until 6m until 3 m total total until 6m until 3 m total

B-Human 0.204 0.285 0.583 0.972 0.657 0.657 0.662 -
JET-Net 0.662 0.781 0.929 0.856 0.683 0.705 0.793 0.591

Table 3. Results of the dynamic evaluation. Comparing JET-Net to B-Human.
As B-Human does not provide probabilities, there is no MAP to be calculated.

4.2 Robot Detection During a Game

We also evaluated the performance for a test game of B-Human. During the
game, we measured the precision, recall, IoU, and MAP for both approaches.
As the B-Human approach does not rank the detections, there is no MAP value
for this approach. While the precision of B-Human is still a bit better than
our approach, we outperform the B-Human approach in every other category.
Especially, we are able to achieve a much higher recall (see Table 3). The B-
Human detector is tuned to strongly prefer precision over recall.

4.3 Performance

The software on the NAO robot alternatingly processes the image of the upper
and the lower camera. As each camera runs at 30 fps, this results in an overall
60 fps. When processing the upper image, which we use in a higher resolution
than the lower one, the B-Human detector only needs 0.5 ms per frame on average
but relies on a previously executed color segmentation that takes more than 3 ms.
While the main task of the upper camera is the raw robot detection, the lower
camera is mainly used for calculating the robot distances. As shown before in
Table 1, JET-Net takes 9.0 ms for the inference of one image on a NAO V5 robot.
However, as our network is able to predict the distances only from one image,
the lower camera is not needed anymore, which can be considered as a reduction
of the average runtime to 4.5 ms. This makes it still possible to run each camera
at 30 fps. Furthermore, recent measurements on a new NAO V6 robot revealed
a runtime of only 2.5 ms.

5 Conclusion and Future Work

In this paper, we presented a framework for designing and training object de-
tectors for mobile robots that are real-time capable, which is called JET-Net.
By defining a coarse structure that only depends on few hyperparameters, we
provide an easily adaptable network with advice for finding those few hyper-
parameters. We used that framework for instantiating a robot detector for the
RoboCup SPL that runs on a NAO V5 in real-time. Furthermore, in comparison
to the current robot detector of B-Human, we are able to recognize three times
more objects by only losing a few percents in precision. As our system delivers



probabilities, this ratio can be shifted to the one or the other direction. When
comparing the maximum distance to which a robot can be detected, we are able
to detect robots for further 1.5 m compared to B-Human’s approach.

Additionally, we presented Simulation Transfer Learning, a technique that
makes further use of the features that are already created for the robot detection.
In doing so, it is able to receive more information about a detected object with
almost no further calculations. The reuse of the already learned features makes
it possible to learn these additional features from simulation only. This provides
a simple method for crossing the simulation reality gap. In our experiments, we
used this approach for estimating the distance to detected robots. The results
show that in general, we can provide a better measure than current approaches
that calculate the distance regarding to the current pose of the robot. However,
this depends strongly on the pose of the detected robot. Thus, we have a bigger
standard deviation than the geometric approach.

Further works can investigate the detection of other objects like a ball or
goal posts in the SPL or entirely new scenarios on other robot platforms. As we
did not use any special characteristics of the NAO V5, our approach should be
easily transferable to these scenarios. Moreover, the computation of other char-
acteristics than the distance, like the orientation, could be obtained from the
simulation and applied to real world scenarios. Although the inference time of
JET-Net is already satisfying, it could probably be improved by using approxi-
mations techniques like XNOR-Net [20].
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